首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
IL-1 beta promotes adhesiveness in human umbilical vein endothelial cells (HuVEC) for eosinophils through expression of adhesion molecules including intercellular adhesion molecules-1 (ICAM-1), E-selectin, and vascular cell adhesion molecule-1 (VCAM-1). Using an in vitro endothelial monolayer system, we examined whether IL-1 beta or TNF-alpha can promote eosinophil transendothelial migration. We also evaluated the contributions of ICAM-1, E-selectin, VCAM-1, leukocyte adhesion complex (CD11/18), and very late Ag-4 (CD11b/18) (VLA-4) in this process using blocking mAb, and determined the changes in expression of CD11b and L-selectin on eosinophils that had undergone transmigration. IL-1 beta and TNF-alpha treatment of HuVEC (4 h, 5 ng/ml) induced significant transendothelial migration of eosinophils (a 4.1 +/- 0.4-fold (IL-1 beta) and 2.0 +/- 0.9-fold (TNF-alpha) increase from the spontaneous value of 3.2 +/- 0.3%). Increased CD11b expression and shedding of L-selectin were observed on eosinophils following IL-1 beta-induced eosinophil transendothelial migration. Studies with mAb revealed that blockade of either ICAM-1 or CD11/18 inhibited transmigration, while antibodies against VCAM-1 and VLA-4 had no inhibitory effect. Among antibodies which block beta 2 integrins, anti-CD18 mAb had the best inhibitory effect (88% inhibition). The combined inhibitory effect of anti-CD11a mAb and anti-CD11b mAb was roughly equal to that of anti-CD18, although anti-CD11a (31% inhibition) and anti-CD11b (52% inhibition) were less effective individually. Anti-ICAM-1 by itself inhibited IL-1 beta-induced eosinophil transendothelial migration (24% inhibition) whereas neither anti-E-selectin nor anti-VCAM-1 were effective inhibitors. Interestingly, the combination of anti-E-selectin and anti-VCAM-1 with anti-ICAM-1 inhibited IL-1 beta-induced eosinophil transendothelial migration significantly better (53% inhibition) than anti-ICAM-1 alone. These results suggest that although the initial attachment of eosinophils to IL-1 beta-activated endothelial cells involves VCAM-1, E-selectin, and ICAM-1, the subsequent transendothelial migration process relies heavily on ICAM-1 and CD11/18. Finally, the changes that eosinophils have been observed to undergo during infiltration in vivo, namely increased expression of CD11/18 and shedding of L-selectin, appear to take place as a direct result of the interaction between eosinophils and endothelial cells.  相似文献   

2.
Pulmonary eosinophilia is one of the most consistent hallmarks of asthma. Infiltration of eosinophils into the lung in experimental asthma is dependent on the adhesion molecule vascular cell adhesion molecule-1 (VCAM-1) on endothelial cells. Ligation of VCAM-1 activates endothelial cell NADPH oxidase, which is required for VCAM-1-dependent leukocyte migration in vitro. To examine whether endothelial-derived NADPH oxidase modulates eosinophil recruitment in vivo, mice deficient in NADPH oxidase (CYBB mice) were irradiated and received wild-type hematopoietic cells to generate chimeric CYBB mice. In response to ovalbumin (OVA) challenge, the chimeric CYBB mice had increased numbers of eosinophils bound to the endothelium as well as reduced eosinophilia in the lung tissue and bronchoalveolar lavage. This occurred independent of changes in VCAM-1 expression, cytokine/chemokine levels (IL-5, IL-10, IL-13, IFNgamma, or eotaxin), or numbers of T cells, neutrophils, or mononuclear cells in the lavage fluids or lung tissue of OVA-challenged mice. Importantly, the OVA-challenged chimeric CYBB mice had reduced airway hyperresponsiveness (AHR). The AHR in OVA-challenged chimeric CYBB mice was restored by bypassing the endothelium with intratracheal administration of eosinophils. These data suggest that VCAM-1 induction of NADPH oxidase in the endothelium is necessary for the eosinophil recruitment during allergic inflammation. Moreover, these studies provide a basis for targeting VCAM-1-dependent signaling pathways in asthma therapies.  相似文献   

3.
Eosinophils, through their ability to generate an array of potent mediators, are thought to be the major effector cells in a number of conditions, including parasitic infection, asthma, and other allergic diseases. The mechanism(s) by which eosinophils, as opposed to neutrophils, accumulate at inflammatory sites is unknown. One possible mechanism would be an eosinophil-specific pathway of adhesion to vascular endothelium. In this study we have demonstrated that human eosinophils, but not neutrophils, constitutively express alpha 4 beta 1 (CD49d/CD29). Expression was not increased on low density eosinophils or normal density cells stimulated with platelet-activating factor. Eosinophils, but not neutrophils, specifically adhered to COS cells transfected with vascular adhesion molecule-1 in a alpha 4 beta 1-dependent manner. Eosinophil, but not neutrophil, adhesion to IL-1 stimulated human umbilical vascular endothelial cells was significantly inhibited by alpha 4 beta 1 mAb at both 5 h (p less than 0.05) and 20 h (p less than 0.001). Inhibition of both resting and platelet-activating factor-(10(-7) M) stimulated eosinophil adhesion was observed. We conclude that the alpha 4 beta 1/vascular adhesion molecule-1 adhesion pathway may be involved in specific eosinophil, as opposed to neutrophil, migration into sites of eosinophilic inflammation.  相似文献   

4.
We have compared the adhesion of 51Cr-labeled eosinophils and neutrophils to cultured human umbilical vein endothelial cell (EC) monolayers that have been stimulated with IL-1, TNF, or LPS. Each agent stimulated the adhesion to EC of both eosinophils and neutrophils in a similar dose- and time-dependent manner. F(ab')2 fragments of mAb 1.2B6 (anti-endothelial leukocyte adhesion molecule (ELAM)-1) and mAb 6.5B5 (anti-intercellular adhesion molecule (ICAM)-1) each inhibited partially, and to a similar extent, eosinophil and neutrophil adhesion to EC monolayers prestimulated with TNF (10 ng/ml) for 6 h. Greater inhibition of both eosinophil and neutrophil adhesion was achieved by combining the effects of mAb 1.2B6 with either mAb 6.5B5 or mAb TS1/18 (anti-CD18). These observations indicate that both ELAM-1 and ICAM-1 are involved in the adhesion of eosinophils and neutrophils to EC stimulated with TNF. In order to determine whether these molecules are expressed in vivo during allergen-induced late phase allergic responses in the skin, human skin biopsies were examined at 6 h after Ag or saline challenge with the use of an alkaline phosphatase-staining technique. Both ELAM-1 and ICAM-1 were expressed with greater intensities in Ag-challenged biopsies, suggesting that these molecules may be involved in granulocyte recruitment in vivo. The similarities we have established between mechanisms of eosinophil and neutrophil adhesion to cytokine-stimulated EC suggests that factors other than differential leukocyte-EC adhesion may be responsible for the selective accumulation of eosinophils at sites of allergic inflammation.  相似文献   

5.
Diabetes mellitus is associated with an increased prevalence of endothelial dysfunction and development of atherosclerotic vascular diseases. We demonstrate here that hyperglycemia results in the expression of adhesion molecules on endothelial cells in vitro. Incubation of human umbilical vein endothelial cells (HUVEC) in a culture medium with 11.0 mM, 16.5 mM and 22.0 mM glucose concentrations induced the expression of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1) and endothelial-leukocyte adhesion molecule-1 (ELAM-1). This effect was detectable after 24 h incubation of HUVEC with a high glucose concentration. The effect of high glucose concentration on TNF-alpha induced expression of ELAM-1, VCAM-1 and ICAM-1 was negligible, if at all. These results show that even a short-term exposure of endothelial cells (ECs) to high glucose concentration leads to their activation associated with increased expression of adhesion molecules such as ELAM-1, VCAM-1 and ICAM-1.  相似文献   

6.
Basophils have been shown to accumulate in allergic airways and other extravascular sites. Mechanisms responsible for the selective recruitment of basophils from the blood into tissue sites remain poorly characterized. In this study, we characterized human basophil rolling and adhesion on HUVECs under physiological shear flow conditions. Interestingly, treatment of endothelial cells with the basophil-specific cytokine IL-3 (0.01-10 ng/ml) promoted basophil and eosinophil, but not neutrophil, rolling and exclusively promoted basophil adhesion. Preincubation of HUVECs with an IL-3R-blocking Ab (CD123) before the addition of IL-3 inhibited basophil rolling and adhesion, implicating IL-3R activation on endothelial cells. Incubation of basophils with neuraminidase completely abolished both rolling and adhesion, indicating the involvement of sialylated structures in the process. Abs to the beta(1) integrins, CD49d and CD49e, as well as to P-selectin and P-selectin glycoprotein ligand 1, inhibited basophil rolling and adhesion. Furthermore, blocking chemokine receptors expressed by basophils, such as CCR2, CCR3, and CCR7, demonstrated that CCR7 was involved in the observed recruitment of basophils. These data provide novel insights into how IL-3, acting directly on endothelium, can cause basophils to preferentially interact with blood vessels under physiological flow conditions and be selectively recruited to sites of inflammation.  相似文献   

7.
We examined the role of cytosolic phospholipase A2 (cPLA2) during human eosinophil adherence to ICAM-1- or VCAM-1-coated plates. IL-5-stimulated eosinophils adhered to ICAM-1 through the beta 2 integrin CD11b/CD18, while nonstimulated eosinophils did not. By contrast, nonstimulated eosinophils adhered to VCAM-1 through the beta 1-integrin VLA-4/CD29. Both IL-5-induced adhesion to ICAM-1 and spontaneous adhesion to VCAM-1 corresponded temporally to cPLA2 phosphorylation, which accompanied enhanced catalytic activity of cPLA2. The structurally unrelated cPLA2 inhibitors, arachidonyl trifluoromethylketone and surfactin, significantly inhibited eosinophil adhesion to ICAM-1 and VCAM-1 in a concentration-dependent manner. Inhibition of secretory PLA2, 5-lipoxygenase, or cyclooxygenase did not affect eosinophil adhesion. Addition of arachidonic acid to eosinophils after cPLA2 inhibition with arachidonyl trifluoromethylketone or surfactin did not reverse the blockade of adhesion to ICAM-1 or VCAM-1. However, CV-6209, a receptor-specific antagonist of platelet-activating factor, inhibited all integrin-mediated adhesion. The activated conformation of CD11b as identified by the mAb, CBRM1/5, as well as quantitative surface CD11b expression were up-regulated after IL-5 stimulation. However, cPLA2 inhibition neither prevented CBRM1/5 expression nor blocked surface Mac-1 up-regulation caused by IL-5. Our data suggest that cPLA2 activation and its catalytic product platelet-activating factor play an essential role in regulating beta 1 and beta 2 integrin-dependent adhesion of eosinophils. This blockade occurs even in the presence of up-regulated eosinophil surface integrin.  相似文献   

8.
Human basophils respond to Ag-induced cross-linking of their high affinity IgE receptor, FcepsilonRI, by releasing histamine and other mediators from granules, producing IL-4 and other cytokines and, as shown in this study, by forming membrane ruffles and showing increased very late Ag-4 (VLA-4)-mediated adhesion to VCAM-1-expressing target cells. We have identified five blood donors whose basophils lack detectable levels of the FcepsilonRI-associated protein tyrosine kinase, Syk. Despite showing no obvious ultrastructural differences from normal basophils, nonreleaser basophils fail to form membrane ruffles, to show increased VLA-4-mediated adhesive activity, or to produce IL-4 in response to FcepsilonRI cross-linking. Although Syk protein levels are suppressed in basophils from all five donors, Syk mRNA is consistently present. Furthermore, culturing nonreleaser basophils for 4 days with IL-3 restores Syk protein expression and FcepsilonRI-mediated histamine release. Understanding the reversible suppression of Syk protein expression in nonreleaser basophils, and learning to replicate this property in patients with allergic inflammation could be a powerful and specific way to limit symptomatic disease.  相似文献   

9.
Cytokine-activated human endothelial cells express vascular cell adhesion molecule-1 (VCAM-1), which binds lymphocytes. We now identify the integrin VLA-4 as a receptor for VCAM-1 because VLA-4 surface expression on K-562 cells (following transfection of the VLA alpha 4 subunit cDNA) resulted in specific cell adhesion to VCAM-1, and anti-VLA-4 antibodies completely inhibited VCAM-1-dependent cell-cell attachment. In addition, VLA-4 expression allowed K-562 cells to attach to the heparin II binding region (FN-40) of fibronectin. However, VLA-4/VCAM-1 and VLA-4/FN-40 interactions are readily distinguishable: only the former was inhibited by the anti-VLA-4 monoclonal antibody HP1/3, and only the latter was inhibited by soluble FN-40. The VCAM-1/VLA-4 ligand-receptor pair may play a major role in the recruitment of mononuclear leukocytes to inflammatory sites in vivo.  相似文献   

10.
Allergic inflammation involves the mobilization and trafficking of eosinophils to sites of inflammation. Galectin-3 (Gal-3) has been shown to play a critical role in eosinophil recruitment and airway allergic inflammation in vivo. The role played by Gal-3 in human eosinophil trafficking was investigated. Eosinophils from allergic donors expressed elevated levels of Gal-3 and demonstrated significantly increased rolling and firm adhesion on immobilized VCAM-1 and, more surprisingly, on Gal-3 under conditions of flow. Inhibition studies with specific mAbs as well as lactose demonstrated that: 1) eosinophil-expressed Gal-3 mediates rolling and adhesion on VCAM-1; 2) alpha(4) integrin mediates eosinophil rolling on immobilized Gal-3; and 3) eosinophil-expressed Gal-3 interacts with immobilized Gal-3 through the carbohydrate recognition domain of Gal-3 during eosinophil trafficking. These findings were further confirmed using inflamed endothelial cells. Interestingly, Gal-3 was found to bind to alpha(4) integrin by ELISA, and the two molecules exhibited colocalized expression on the cell surface of eosinophils from allergic donors. These findings suggest that Gal-3 functions as a cell surface adhesion molecule to support eosinophil rolling and adhesion under conditions of flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号