首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The total fatty acids (FA) composition of Blumeria graminis f.sp. tritici conidia, the causal agent of wheat powdery mildew, was analyzed as a function of their age. A total of 19 FA (C12-C24 saturated and unsaturated) and unusual methoxylated fatty acids (mFA) were detected in young, intermediate and old conidia. Two very long chain methoxylated FA were identified by GC-MS as 3-methoxydocosanoic and 3-methoxytetracosanoic acids. Medium chain FA were predominant in young conidia (75%, including 13% of mFA) while very long chain fatty acids constituted the major compounds in old conidia (74%, including 30% of mFA). We have shown for the first time that the total FA composition is strongly correlated with the age of B. graminis f.sp. tritici (Bgt) conidia.  相似文献   

2.
Treatment of wheat leaves with heptanoyl salicylic acid (HS) and trehalose at concentrations of 0.1 and 15 g l(-1), prior to fungal inoculation, resulted in 40% and 60% protection, respectively, against powdery mildew. The total lipid composition of Blumeria graminis f.sp. tritici (Bgt) conidia, the causal agent of wheat powdery mildew, was compared when produced on wheat leaves, respectively, untreated and treated with the two elicitors, HS and trehalose. An obvious effect was observed on lipid composition (sterol and fatty acid (FA)) of Bgt conidia produced on wheat leaves treated with HS. A total of 16 FA (C12-C24 saturated and unsaturated) as well as unusual methoxylated Fatty Acids (mFA) (3-methoxydocosanoic and 3-methoxytetracosanoic acids) were detected in the conidia. Medium chain FA were predominant in HS treated conidia (64.65%) while long chain fatty acids constituted the major compounds in untreated conidia (62%). The long chain/medium chain FA ratio decreased from 1.8 in the conidia produced on untreated leaves to 0.5 in the conidia obtained from HS treated leaves. When comparing the sterol composition of Bgt conidia produced on leaves treated with HS versus conidia obtained from untreated ones, very important changes within the two major classes can be seen. In particular, 24-methylsterols, e.g., 24-methylenecholesterol and 24-methylcholesta-7,24-dien were reduced by about 82% whereas 24-ethylsterols, e.g., 24-ethylcholesterol and 24-ethylcholesta-5,22-dienol were increased by about 85%. The 24-methylsterols/24-ethylsterols ratio was reduced by ninefold in the conidia produced from HS treated leaves.  相似文献   

3.
Ten zooxanthellae-free Dendronephthya species , twelve zooxanthellate soft coral species of the genera Sarcophyton, Lobophytum, Cladiella, Lytophyton, Cespitularia, and Clavularia, and the hermatypic coral Caulastrea tumida were examined for the first time to elucidate the fatty acid (FA) composition of total lipids. In Dendronephthya species, the main FAs were 20:4n-6, 24:5n-6, 16:0, 18:0, 7-Me-16:1n-10, and 24:6n-3 which amounted on the average to 26.0, 12.7, 12.1, 6.0, 4.8, and 4.0% of the total FA contents, respectively. For zooxanthellate soft corals, the main FAs were 16:0 (25.7%), 20:4n-6 (18.2%), 24:5n-6 (6.2%), and 18:4n-3 (5.6%), as well as 16:2n-7, which amounted up to 11.8% in Sarcophyton aff. crassum. Corals with zooxanthellae had low contents of 24:6n-3. The significant difference (p<0.01) between azooxanthellate and zooxanthellate soft corals was indicated only for 12 of 46 FAs determined. The principal components analysis confirmed that 7-Me-16:1n-10, 17:0, 18:4n-3, 18:1n-7, 20:4n-6, 22:5n-6, 24:5n-6, and 24:6n-3 are useful for chemotaxonomy of Dendronephthya. The azooxanthellate soft corals studied were distinguished by the absence of significant depth-dependent and species-specific variations of FA composition, low content of 16:2n-7, an increased proportion of bacterial FAs, predominance of n-6 FAs connected with active preying, and a high ability for biosynthesis of tetracosapolyenoic FAs.  相似文献   

4.
The chain length (CL) of fatty acids (FAs) is pivotal to oil property, yet to what extent it can be customized in industrial oleaginous microalgae is unknown. In Nannochloropsis oceanica, to modulate long-chain FAs (LCFAs), we first discovered a fungi/bacteria-originated polyketide synthase (PKS) system which involves a cytoplasmic acyl-ACP thioesterase (NoTE1). NoTE1 hydrolyzes C16:0-, C16:1- and C18:1-ACP in vitro and thus intercepts the specific acyl-ACPs elongated by PKS for polyunsaturated FA biosynthesis, resulting in elevation of C16/C18 monounsaturated FAs when overproduced and increase of C20 when knocked out. For medium-chain FAs (MCFAs; C8-C14), C8:0 and C10:0 FAs are boosted by introducing a Cuphea palustris acyl-ACP TE (CpTE), whereas C12:0 elevated by rationally engineering CpTE enzyme's substrate-binding pocket to shift its CL preference towards C12:0. A mechanistic model exploiting both native and engineered PKS and type II FAS pathways was thus proposed for manipulation of carbon distribution among FAs of various CL. The ability to tailor FA profile at the unit CL resolution from C8 to C20 in Nannochloropsis spp. lays the foundation for scalable production of designer lipids via industrial oleaginous microalgae.  相似文献   

5.
Rodent experiments have emphasized a role of central fatty acid (FA) species, such as oleic acid, in regulating peripheral glucose and energy metabolism. Thus, we hypothesized that central FAs are related to peripheral glucose regulation and energy expenditure in humans. To test this we measured FA species profiles in cerebrospinal fluid (CSF) and plasma of 32 individuals who stayed in our clinical inpatient unit for 6 days. Body composition was measured by dual energy X-ray absorptiometry and glucose regulation by an oral glucose test (OGTT) followed by measurements of 24 hour (24EE) and sleep energy expenditure (SLEEP) as well as respiratory quotient (RQ) in a respiratory chamber. CSF was obtained via lumbar punctures; FA concentrations were measured by liquid chromatography/mass spectrometry. As expected, FA concentrations were higher in plasma compared to CSF. Individuals with high concentrations of CSF very-long-chain saturated FAs had lower rates of SLEEP. In the plasma moderate associations of these FAs with higher 24EE were observed. Moreover, CSF monounsaturated long-chain FA (palmitoleic and oleic acid) concentrations were associated with lower RQs and lower glucose area under the curve during the OGTT. Thus, FAs in the CSF strongly correlated with peripheral metabolic traits. These physiological parameters were most specific to long-chain monounsaturated (C16∶1, C18∶1) and very-long-chain saturated (C24∶0, C26∶0) FAs. CONCLUSIONS: Together with previous animal experiments these initial cross-sectional human data indicate that central FA species are linked to peripheral glucose and energy homeostasis.  相似文献   

6.
Mid-infrared spectroscopy (MIR) is used to predict fatty acid (FA) composition of individual milk samples (n=267) of Brown Swiss cows. FAs were analyzed by gas chromatography as a reference method. Samples were scanned (4000 to 900 cm-1) by MIR, and predictive models were developed using modified partial least squares regressions with full cross-validation. The methods using a first derivative or multiplicative scatter corrected plus first derivative resulted, on average, in the best predictions. Coefficients of correlation between measured and predicted C8:0, C10:0, C12:0, C14:0, anteiso-C17:0, c9-C18:1, and medium- and long-chain FA, and saturated, monounsaturated and unsaturated FA ranged from 0.71 to 0.77, suggesting that prediction models can be implemented in milk recording schemes to routinely collect information on FA composition from the whole Brown Swiss population for breeding purposes.  相似文献   

7.
This study examines the composition of lipids, fatty acids, and fatty aldehydes in two marine bryozoan species, Berenicea meandrina and Dendrobeania flustroides, from the Sea of Okhotsk. The share of neutral lipids was up to 57.3% in D. flustroides and 54.9% in B. meandrina; the share of polar lipids was 33.2 and 40.4%, respectively. In all, 57 fatty acids (FA) and 9 aldehydes were identified in total lipids. The main FAs were 16:0, 18:0, 22:6n-3, and 20:5n-3. The content of branched saturated FA in bryozoans was on the average 6.4%. Three isomers of 16:1 (n-9, n-7, and n-5), five isomers of 18:1 (n-13, n-11, n-9, n-7, and n-5), four isomers of 20:1 (n-13, n-11, n-9, and n-7), as well as 22:1n-9 and 22:1n-13 were found; the presence of 7-methyl-6-hexadienoic acid (on the average, 3.0% of total FAs) was demonstrated. Non-methylene-inter-rupted FAs contributed 8.9 and 1.6% of the total FAs in D. flustroides and B. meandrina, respectively, and were identified as 20:2(5,11), 20:2(7,13), 20:3(5,11,14), 22:2(7,13), and 22:2(7,15). In B. meandrina, minor amounts of 24:0, 24:1, 25:0, 26:0, 24:4n-3, 26:3(5,9,19), and 28:3(5,9,19) were found, suggesting sponge biofouling on some bryozoan colonies. Aldehydes (branched saturated and unsaturated C16–19 homologues) did not exceed 10.3 and 1.9% of the total FAs in D. flustroides and B. meandrina, respectively. The presence of the FA markers that are characteristic of microalgae, protozoans, and detritus in bryozoan lipids agrees well with data on polytrophic feeding of these bryozoans.  相似文献   

8.
To investigate the effect of the ceramide moiety of GM1 ganglioside on its association with detergent resistant membrane domains (DRMs) in human leukemia HL-60 cells, [(3)H] labeled GM1 molecular species (GM1s) with ceramides consisting of C18 sphingosine acetylated or acylated with C(8), C(12), C(14), C(16), C(18), C(22), C(24), C(18:1), C(22:1), or C(24:1) fatty acids (FAs), or C20 sphingosine acetylated or acylated with C(8) or C(18) FA were prepared and added to culture media. GM1s uptake by HL-60 cells was affected by the structure of their ceramides. Resistance to removal with trypsin and the stoichiometry of [(125)I] cholera toxin (CT) binding indicated that the added GM1s were incorporated into the membranes of the cells used for the isolation of DRMs in a manner resembling endogenous gangliosides. The ceramide moieties of the GM1s determined their occurrence in DRMs and the dependence of their recovery in this membrane fraction on the amount of Triton X-100 (TX) used for extraction as well as on cholesterol depletion. The GM1s with sphingosine acylated with C(14), C(16), C(18) C(22), or C(24) FAs were similarly abundant in DRMs. GM1s acylated with C(18:1), C(22:1), or C(24:1) were less abundant than those acylated with saturated FA of the same length. GM1s acetylated or acylated with C(8) FA were detected in DRMs in the lowest proportion. Depletion of 73% of cell cholesterol with methyl-beta-cyclodextrin significantly affected the recovery in DRMs of GM1s acetylated or acylated with C(8) or unsaturated FAs but not of GM1 acylated with C(18), C(22), or C(24) FAs. After cross-linking with CT B subunit, all GM1s were recovered in DRMs in a similarly high proportion irrespective of their ceramide structure or cholesterol depletion. DRMs prepared with low TX concentration at the TX/cell protein ratio of 0.3:1 were separated by multistep sucrose density gradient centrifugation into two fractions. The GM1s with sphingosine acetylated or acylated with C(18) or C(18:1) FAs occurred in these fractions in different proportions.  相似文献   

9.
The fatty acid (FA) composition of fresh mycelia of anaerobic rumen fungi was determined. The fatty acids methyl esters (FAME) of six strains belonging to four genera (Neocallimastix, Caecomyces, Orpinomyces, Anaeromyces) and one unknown strain were analyzed by gas chromatography. All studied fungi possess the same FAs but differences were found in their relative concentrations. The FA profile of anaerobic fungi comprises carbon chains of length ranging from 12 to 24; the most common fatty acids were stearic (C(18:0)), arachidic (C(20:0)), heneicosanoic (C(21:0)), behenic (C(22:0)), tricosanoic (C(23:0)) and lignoceric (C(24:0)) with relative amount representing >4% of total FA. Significant differences were determined for heptadecanoic, oleic, behenic and tricosanoic acids. Rumen anaerobic fungi can contain very long chain fatty acids; we found unsaturated fatty acids including cis-11-eicosenoic (C(20:1)), cis-11,14-eicosadienoic (C(20:2)), erucic (C(22:1n9)), cis-13,16-docosadienoic (C(22:2)) and nervonic (C(24:1)) acids in very small amounts but their presence seems to be unique for anaerobic fungi.  相似文献   

10.
This work presents a global investigation of total fatty acid (FA) content in wheat in relation to treatment with four inducers of resistance and to powdery mildew infection. Linolenic acid (C18:3), linoleic acid (C18:2) and palmitic acid (16:0) were the most abundant FAs in wheat leaves. We investigated the effect of the following inducers of resistance: Iodus40, heptanoyl salicylic acid (HSA), Milsana and trehalose on FA accumulation. Previous studies established that lipid metabolism is altered by these compounds, and we therefore aimed to characterise their impact at the FA level. During a time course experiment, content (quantitative analysis) and percentage (qualitative analysis) of FAs were compared in treated plants and in controls, as well as in plants inoculated with Blumeria graminis f. sp. tritici (i) and non-inoculated (ni) plants. No change in C18:3 content was observed. C18:1 in Iodus 40-treated (ni) plants showed a quantitative 1.2-fold increase. Lauric acid (C12:0) content quantitatively increased after Iodus 40 (2.8-fold), Milsana (4.8-fold) and trehalose (4.0-fold) treatment in (i) plants. However, eicosadienoic acid (C20:2) quantitatively decreased in (ni) plants after Iodus 40 (1.5-fold) and Milsana (2.3-fold) treatment. The amount of C18:2 increased (1.6-fold) after HSA treatment in (i) plants. All these variations in FA content were correlated with variations in the corresponding relative percentages. Our work provides the first evidence for alterations in C12:0, C18:1, C18:2 and C20:2 FA content caused by four resistance inducers. We also compared the amount and percentage of each FA in untreated (i) and (ni) plants. In (i) plants, eicosadienoic acid (C20:2) increased and C18:2 decreased slightly. The potential involvement of these FAs during induced resistance and infection is discussed.  相似文献   

11.
The effect of fatty acids (FAs) (C12–C24) on the functioning of winter wheat (Triticum aestivum L.) mitochondria was studied. Such fatty acids as C12:0, C16:0, and C18:0 and unsaturated FAs, such as C18:1 (n-9 cis), C18:1 (n-12 cis), C18:2 (n-9, 12), (18:3, n-3), and C22:1 (n-9 cis) caused efficient uncoupling of oxidative phosphorylation in mitochondria, i.e., an increase in the nonphosphorylating respiration rate and a decrease in the respiratory control value. It was established that C16:0 had the strongest uncoupling effect among all saturated FAs, and C18:3, among unsaturated FAs. The uncoupling effect of saturated FAs is provided by the ADP/ATP-antiporter, while plant uncoupling proteins play an important role in the uncoupling effect of unsaturated FAs. In addition, unsaturated, as well as saturated FAs might serve as oxidative substrates for mitochondria. It was concluded that the role of FAs in energetic metabolism of winter wheat seedlings consisted of uncoupling of oxidative phosphorylation and of serving as substrates for oxidation.  相似文献   

12.
The fatty acid (FA) composition has been analysed in the blubber of 56 minke whales caught during the Norwegian commercial whaling period in 2009–2011. Minke whales from four regions were sampled: the North Sea, Vesterålen, Spitsbergen/Bear Island and Finnmark. The FA profiles of the whale blubber have been compared with FA profiles of potential prey species to investigate if FA analysis can be used to predict the diet of minke whales and how the FA profiles of the blubber reflect the regional ecosystem in which the whales were caught. Clear differences in blubber FA profiles were found between minke whales from different areas, and the results of the present study show that FA analysis of the blubber can be used to indicate the whale's diet, but there appears to be a strong impact from metabolism on several FAs. The whale blubber FAs are separate from those of the prey by having relatively high levels of FAs likely to originate from endogenous metabolism, such as 18:1n9 (Δ9-desaturation of 18:0); chain shortening products of 22:1(n-11); 20:1(n-11) and 18:1(n-11); as well as 22:5(n-3), which is an elongation product of 20:5(n-3). High metabolic activity in the adipose tissue was also evident by the clear stratification of FA profiles found throughout the blubber layer. It is remarkable that the whale blubber has much lower levels of the long-chain PUFAs 20:5(n-3) and 22:6(n-3) than found in the prey organisms. It is likely that this results from selective partitioning of diet FAs between the storage lipids and membrane lipids.  相似文献   

13.
Glucosylceramide (Glc beta 1-1Cer) was isolated from the spermatozoa of the starfish, Asterias amurensis. The long-chain bases of the glycolipid consisted of dihydroxy (d18:2, d18:3, d19:3, and d22:2), and trihydroxy (t22:1) types. Long-chain aldehydes derived from them were analyzed mainly by proton nuclear-magnetic resonance to determine the detailed structures. Two of the tri-unsaturated bases were identified as (4E,8E,10E)-2-amino-4,8,10-octadecatriene-1,3-di ol (d18:3) and (4E,8E,10E)-2-amino-9-methyl-4,8,10-octadecatriene+ ++-1,3-diol (d19:3), which is a novel base. Both d22:2 and t22:1 had a cis double bond at the C9 or C13 position. All fatty acids were 2-hydroxylated (C14-C25): Most of them were saturated and unbranched. About 10% was mono-unsaturated and unbranched (C22-C25), while saturated but branched (iso- and anteiso-types) C15-C18 acids were found as minor components. The main fatty acids, which summed up to more than 93% of the fatty acids in the glucosylceramide, were n-14h:0, n-15h:0, n-16h:0, n-17h:0, n-18h:0, and n-24h:1.  相似文献   

14.
Characterization of Aspergillus species based on fatty acid profiles   总被引:1,自引:0,他引:1  
Cellular fatty acid (FA) composition was utilized as a taxonomic tool to discriminate between different Aspergillus species. Several of the tested species had the same FA composition and different relative FA concentrations. The most important FAs were palmitic acid (C16:0), estearic acid (C18:0), oleic acid (C18:1) and linoleic acid (C18:2), which represented 95% of Aspergillus FAs. Multivariate data analysis demonstrated that FA analysis is a useful tool for differentiating species belonging to genus Aspergillus. All the species analyzed showed significantly FA acid profiles (p < 0.001). Furthermore, it will be possible to distinguish among Aspergillus spp. in the Flavi Section. FA composition can serve as a useful tool for the identification of filamentous fungi.  相似文献   

15.
Phytohormones and fatty acids (FAs) play important roles in plant resistance to insects and pathogens. In this study, we investigated the similarities and differences in the accumulations of phytohormones and FAs in the resistant wheat (Triticum aestivum L.) 'Molly' and the nonhost rice (Oryza sativa L.) 'Niponbare' in responses to Hessian fly, Mayetiola destructor (Say) (Diptera: Cecidomyiidae), larval attacks. Using chemical ionization-gas-chromatography/mass spectrometry, we analyzed the concentrations of 13 phytohomones and FAs at the attack site of wheat and rice plants at 1, 6, 24, or 48 h after the initial attack. Hessian fly attack resulted in increases of salicylic acid (SA), 12-oxo-phytodienoic acid (OPDA), palmitic acid (FA16:0), but a decrease of abscisic acid in both wheat and rice plants. In addition, the accumulation of jasmonic acid (JA) increased, whereas the accumulation of cinnamic acid (CA) decreased in wheat plants, but no changes were observed in the accumulation of JA, and the accumulation of CA increased in rice plants after Hessian fly attack. However, the accumulations of benzoic acid, strearic acid (FA18:0), and oleic acid (FA18:1) increased in rice plants, but no changes were observed in wheat plants after Hessian fly attack. Hessian fly-induced changes were more rapid in wheat plants in comparison with those in rice plants. Our study suggests that SA and OPDA may be involved in resistance of wheat and rice plants to Hessian fly and that the R gene-mediated resistance responses are more rapid than nonhost resistance responses.  相似文献   

16.
Information on lipids in forages is scarce, and effects of nitrogen (N) application level and regrowth period on the fatty acid (FA) concentration and composition of perennial ryegrass (Lolium perenne L.) were studied. N was applied at 0, 45 and 100 kg ha?1, and swards were cut after various regrowth periods, resulting in six treatments designed as randomised blocks with three replicates. The stages of development ranged from vegetative to elongating swards, with herbage yield levels from 1.9 to 4.2 t dry matter (DM) ha?1. Concentrations of individual FA were determined by gas chromatography, and canopy characteristics and herbage quality were assessed. The treatments resulted in canopies with contrasting DM yields and protein concentrations. Five FAs, representing 98% of total FAs, were studied in detail. On an average, the concentration of these major FAs in fresh grass was 15.1 g kg?1 DM, and 69% of the major FAs consisted of C18:3. Regrowth period affected (P < 0.05) the total FA concentration, and significantly (P < 0.01) lower concentrations of C18:3 and C16:1 were found after a longer period of regrowth. N application resulted in higher (P < 0.001) concentrations of all FAs. The FA composition was not affected by N application, but a longer regrowth period significantly (P < 0.001) decreased the proportion of C18:3 and increased those of C18:2 and C16:0. A strong, positive overall linear relation was found between the concentrations of total FAs and C18:3 with the crude protein concentration in the herbage. These studies demonstrate opportunities to affect the FA concentration and composition of FA in herbage through management strategies, which could affect milk FA composition.  相似文献   

17.
Dietary and ruminal factors modify the ruminal biohydrogenation (RBH) of polyunsaturated fatty acids (FA), with duodenal FA flows being quantitatively and qualitatively different from FA intake. Using a meta-analysis approach from a database on duodenal flows of FA in ruminants, this study aimed to determine predictive equations for duodenal and absorbed flows of saturated FA, C18:1, C18:2 and C18:3 isomers, odd- and branched-chain FA (OBCFA), C20:5n-3, C22:5n-3 and C22:6n-3 and to quantify the effects of dietary and digestive factors on those equations. The database was divided into four subsets: forage, seed, vegetable oils or animal fats (oil/fat), and fish products (fish) subsets. Models of duodenal and absorbed FA flows were obtained through variance–covariance analysis. Effects of potential interfering factors (conservation mode and botanical families of forages, lipid source, technological processing of lipid supplements, diet composition and animal characteristics) were analysed. We obtained 83 models for duodenal FA flows as a function of FA intake for saturated FA (C14:0, C16:0 and C18:0), C18:1, C18:2 and C18:3 isomers and seven other models for OBCFA. For the seed/oil/fat subset, intakes of total C18:3, C18:2 and starch content increased the duodenal t11-C18:1 flow with 0.08, 0.16 and 0.005 g/kg of dry matter intake (DMI), respectively, whereas intake level [(DMI×100)/BW] decreased it. The c9c12c15-C18:3 RBH was higher for oil/fat than seed (96.7% v. 94.8%) and a protective effect of Leguminosae v. Gramineae against RBH for that FA appeared in the forage subset. The duodenal C17:0 flow increased with starch content and decreased with ruminal pH, respectively, whereas duodenal iso-C16:0 flow decreased with dietary NDF content for the seed/oil/fat subset. The duodenal C20:5n-3, C22:5n-3 and C22:6n-3 flows depended on their respective intake and the inhibitory effect of C22:6n-3 on duodenal C18:0 flow was quantified. Thirteen models of absorbed FA flows were performed depending on their respective duodenal flows. This study determined the effects of different qualitative and quantitative dietary and digestive factors, allowing for improved predictions of duodenal and absorbed FA flows.  相似文献   

18.
Altered membrane integrity in hepatocellular carcinoma (HCC) tissue was indicated by an elevation in cholesterol and significant decrease in phosphatidylcholine (PC). The resultant decreased phosphatidylcholine/phosphatidylethanolamine (PC/PE) and increased cholesterol/phospholipid ratios are associated with decreased fluidity in the carcinoma tissue. The lower PC was associated with a decrease in the quantitative levels of the saturated (C16:0, C18:0), ω6 (C18:2, C20:4) and ω3 (C22:5, C22:6) fatty acids (FAs), resulting in reduced long-chain polyunsaturated fatty acids (LCPUFAs), total PUFA and an increase in ω6/ω3 FA ratio. In PE, the saturated and ω3 (C22:5, C22:6) FAs were reduced while the total ω6 FA level was not affected, leading to an increased ω6/ω3 FA ratio. Increased levels of C18:1ω9, C20:2ω6 and reduction of 22:6ω3 in PC and PE suggest a dysfunctional delta-6 desaturase. The reduced PC/PE ratio resulted in a decreased C20:4ω6 (PC/PE) ratio, implying a shift towards synthesis of the 2-series eicosanoids. Lipid peroxidation was reduced in both hepatitis B negative (HBV) and positive (HBV+) HCC tissues. Glutathione (GSH) was decreased in HCC while HBV had no effect, suggesting an impairment of the GSH redox cycle. In contrast HBV infection enhanced GSH in the surrounding tissue possibly to counter oxidative stress as indicated by the increased level of conjugated dienes. Apart from the reduced LCPUFA, the low level of lipid peroxidation in the carcinoma tissue was associated with increased superoxide dismutase and glutathione peroxidase activity. The disruption of the redox balance, resulting in increased cellular antioxidant capacity, could create an environment for resistance to oxidative stress in the carcinoma tissue. Alterations in membrane cholesterol, phospholipids, FA parameters, C20:4ω6 membrane distribution and low lipid peroxidation are likely to be important determinants underlying the selective growth advantage of HCC cells.  相似文献   

19.
Fatty acid (FA) composition of the blubber in free-ranging white whales (Delphinapterus leucas) from Svalbard's waters was determined and compared with the fatty acid composition of potential prey species in an attempt to assess diet. This methodology is based on the common assumption that unique arrays of FAs found within groups of organisms are transferred, largely unaltered, up marine food chains and thus may be useful for assessment of diet composition. Complete-column blubber biopsies were sampled from white whales (n=7) during the summers of 1996 and 1997. All captured animals were adult males. FAs were extracted from 2–4 replicates taken from an area about 10 cm in front of the mid-dorsal ridge. FA data from a total of 12 potential prey species from the Svalbard area were compared to the white-whale blubber samples. Twenty-two FAs were consistently found in relative amounts >0.5% of the total FA composition in white whales. These FAs accounted for 94–96% of the total FAs present. The blubber was composed almost entirely of triacylglycerols. The major saturated FAs were 14:0 and 16:0; 16:1(n-7), 18:1(n-9) and 20:1(n-9) were the major monounsaturated FAs and 20:5(n-3) and 22:6(n-3) were the major polyunsaturated FAs. Sixteen of the 22 FAs consistently found in the white-whale blubber were also found in considerable amounts (>0.5% of total FAs) in most of the potential species. Principal Component Analysis run on these 16 FAs suggests that polar cod (Boreogadus saida) had the most similar FA composition to the white-whale blubber, followed by capelin (Mallotus villosus), the copepod Calanus hyperboreus and the shrimp Pandalus borealis. Accepted: 27 November 1999  相似文献   

20.
Fatty acids (FAs) longer than C20 are classified as very long-chain fatty acids (VLCFAs). Although biosynthesis and degradation of VLCFAs are important for the development and integrity of the myelin sheath, knowledge on the incorporation of extracellular VLCFAs into the cells is limited due to the experimental difficulty of solubilizing them. In this study, we found that a small amount of isopropanol solubilized VLCFAs in aqueous medium by facilitating the formation of the VLCFA/albumin complex. Using this solubilizing technique, we examined the role of the peroxisome in the uptake and metabolism of VLCFAs in Chinese hamster ovary (CHO) cells. When wild-type CHO cells were incubated with saturated VLCFAs (S-VLCFAs), such as C23:0 FA, C24:0 FA, and C26:0 FA, extensive uptake was observed. Most of the incorporated S-VLCFAs were oxidatively degraded without acylation into cellular lipids. In contrast, in peroxisome-deficient CHO cells uptake of S-VLCFAs was marginal and oxidative metabolism was not observed. Extensive uptake and acylation of monounsaturated (MU)-VLCFAs, such as C24:1 FA and C22:1 FA, were observed in both types of CHO cells. However, oxidative metabolism was evident only in wild-type cells. Similar manners of uptake and metabolism of S-VLCFAs and MU-VLCFAs were observed in IFRS1, a Schwan cell-derived cell line. These results indicate that peroxisome-deficient cells limit intracellular S-VLCFAs at a low level by halting uptake, and as a result, peroxisome-deficient cells almost completely lose the clearance ability of S-VLCFAs accumulated outside of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号