首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Brown oak (Quercus semecarpifolia) forest is essential for ecological and socioeconomic functions, mainly grazing in the Himalayas. The tree has failed to regenerate naturally and is a threatened species. Restoration of brown oaks is crucial to ensure sustainability while maintaining livestock grazing in these habitats. Achieving this requires cost‐effective restoration techniques that are practicable and sympathetic to the multiple uses of the forest. We assessed the combined effect of grazing (control) and three tree shelters (Protex tubes, mesh wires, and wooden frames) on the field performance of oak seedlings in a forest with heavy grazing pressure. Seedling survival and morphological indicators, including seedling height, collar diameter, sturdiness quotient (SQ), and leaf mass per area (LMA) indices, were measured. More than 90% of control seedlings without protective shelters suffered severe browsing and demonstrated significantly lower survival rates compared to tree shelter seedlings, indicating that grazing was the primary factor governing regeneration success. Seedling survival in tree shelters was three times higher, while the height increase was two times higher than the control. Additionally, locally made mesh wire and wooden tree shelters were more effective than Protex and control in producing quality seedlings reflected by the SQ and LMA values. We suggest that tree shelter is a promising option to restore brown oaks due to its efficacy to defend grazing and support the local community's rights to forest grazing. Our finding is expected to support Bhutan's forest policy of incorporating grazing and tree regeneration into forest management.  相似文献   

2.

Questions

How do changes in grazing intensity by different herbivores and differences in forest structure affect the assembly of ecological clusters within plant ecological networks in dryland plant communities?

Location

Eastern Australia across an area of 0.4 million km2.

Methods

We used correlation network analysis and structural equation modelling to examine how changes in grazing intensity, by different herbivores, and differences in forest structure (tree canopy cover, basal area and density) and soil fertility influenced the assembly of ecological clusters of plant communities (i.e. relative abundance of ecological clusters formed by co‐occurring plant species within an ecological network) in three forested communities from eastern Australia.

Results

Livestock grazing and forest structure regulated the relative abundance of ecological clusters within plant networks, but their effects on these plant assemblies were highly dependent on the ecological cluster and forest community type, with no single winner or loser across forest types, conditions or grazing intensities. Thus, the relative abundance of some ecological clusters increased under grazing while others declined, a response that was maintained across different forest structures. The relative importance of grazing, forest structure and soil fertility varied across forest community type. The two eucalypt communities exhibited mixed effects of grazing and forest structure (Eucalyptus largiflorens ) or forest structure only (Eucalyptus camaldulensis ). In the third (Callitris glaucophylla ) community, grazing played a larger role in controlling the plant community assembly. Soil fertility (soil C and P) effects were of a similar magnitude to grazing and forest structure, but the effects differed among clusters.

Conclusions

Livestock grazing and forest structure regulated the relative abundance of ecological clusters within networks of plant communities in forests in eastern Australia. Our study uses a novel approach of ecological clusters to show that differences in grazing and forest structure will always disadvantage some plant ecological clusters. Furthermore, changes in one cluster will ultimately affect other clusters. Any changes in management therefore will have varied effects on different ecological plant clusters.
  相似文献   

3.
Summary   Tawa ( Beilschmiedia tawa )-dominated forest fragments on farms within the Rotorua Basin were surveyed to quantify the likely recovery processes following exclusion of domestic livestock grazing, using a space-for-time substitution approach. Vegetation structure, plant diversity and soil fertility were measured at 24 sites within 15 forest fragments on six farms, covering a range in time since exclusion from grazing of 1–53 years. The forest fragments were compared with a large area of ungrazed forest in the nearby Lake Okataina Scenic Reserve. As time since exclusion from grazing increased, indigenous plant species diversity increased (up to 30–35 years); ground fern and epiphyte abundance increased (up to 30–35 years); tree seedling and sapling numbers, and litter cover also increased (up to 10–15 years); and overall tree numbers increased, while average tree diameter at breast height and overall tree basal area did not differ significantly. The soil fertility status was highly variable, obscuring clear patterns, although Olsen P status decreased with time since grazing exclusion. Once grazing of forest fragments ceases, significant changes in their diversity, structure and soil characteristics can be expected, which indicate recovery of these plant communities towards the conditions observed in ungrazed forest.  相似文献   

4.
The impact of forest management on diurnal bird assemblages and abundance was investigated in contiguous tracts of eucalypt forest in the Brigalow Belt Bioregion, south central Queensland. Sites were located across three levels of livestock grazing intensity and three levels of selective logging intensity within the most extensive habitat type, Corymbia citriodora‐dominant forest. We recorded a high rate of incidence and large numbers of the hyper‐aggressive noisy miner Manorina melanocephala (Passeriformes: Meliphagidae) at the majority of our survey sites, a phenomenon rarely reported in non‐cleared landscapes. As shown by numerous studies in fragmented landscapes, the distribution of this species in our study had a substantial negative effect upon the distribution of small passerine species. Noisy miners exerted the strongest influence upon small passerine abundance, and masked any forest management effects. However, key habitat features important for small passerines were identified, including a relatively high density of large trees and stems in the midstorey. Selective logging appeared to exert a minimal effect upon noisy miner abundance, whereas grazing intensity had a profound, positive influence. Noisy miners were most abundant in intensively grazed forest with minimal midstorey and a low volume of coarse woody debris. Higher road density in the forest landscape also corresponded with increased numbers of noisy miners. Reduction in grazing pressure in Brigalow Belt forests has the potential to benefit small passerine assemblages across large areas through moderating noisy miner abundance. The strong relationship between noisy miners and small passerines suggests that noisy miner abundance could act as an easily measured indicator of forest condition, potentially contributing to monitoring of forest management outcomes.  相似文献   

5.
Attalea princeps is an important palm species that shapes the forest–savanna mosaic in Beni, Bolivia, as it dominates the two principal forest landscape elements (forest islands and gallery forest), and provides a vital microhabitat, food, and nesting source for numerous plant and animal species. The forest–savanna mosaic is used for extensive grazing, and the palm population is declining on the forest islands due to a low regeneration rate, which threatens the maintenance of this landscape. We therefore examined the (a)biotic factors that influence the population structure of Attalea in the centers and edges of forest islands and gallery forests. Ninety‐one 0.1‐ha plots were established, and 500 palm adults and 3,700 juveniles were measured for their size, health condition, and fire damage. For each plot, habitat characteristics, such as landscape position, grazing pressure, and soil conditions, were measured. Attalea population density was significantly lower on the forest islands than in the gallery forests, especially in the juvenile life stage. A structural equation model showed that juvenile density is positively related to the health condition of juveniles and amount of fruits present, where the amount of fruits is positively affected by the condition of adults. Juvenile density is negatively influenced by grazing, affecting the health condition of the juvenile, as well as organic matter and phosphate availability in the soil. Therefore, it is recommended to decrease the grazing pressure by decreasing livestock densities, fencing off vulnerable forest islands, or by rotating cattle.Abstract in Spanish is available with online material.  相似文献   

6.
7.
姚雪玲  李龙  王锋  刘书润  吴波  郭秀江 《生态学报》2020,40(5):1663-1671
浑善达克沙地榆树疏林是分布于草原地带的隐域植被类型,相较周边的典型草原区,其植被更加茂密,乔灌丛生,水草丰美,千百年来一直是牧民的优质冬季牧场。近半个世纪以来,因人类的过度开垦以及不合理的放牧管理,浑善达克沙地植被遭到空前的破坏,沙丘活化,载畜能力降低,生态价值和经济价值严重受损。近年来,随着国家草畜平衡以及禁牧政策的推广落实,放牧的牲畜总量得到一定程度的遏制,然而大面积草场还在继续退化。在牧民对生产生活的基本需求下,牲畜总量不可能无限制的压制。另外,适度的放牧对草原生态系统健康是有益的。因此,如何改良放牧方式,合理利用草场,在保持生态良好的基础上合理发挥草场的畜牧价值,是我们亟待探索的问题。以浑善达克沙地的典型天然植被榆树疏林为例,对不同放牧方式下的植被进行调查,基于沙地特殊的基质和植被特征,探讨适合沙地的放牧利用方式。研究表明,在相似的放牧强度下,把沙地作为冬营地,其榆树种群更新正常,植被覆盖度以及植物种类等均能保持良好,而把沙地作为夏季营地,榆树疏林植被退化严重,具体表现为:(1)榆树种群自然更新受阻;(2)灌木群落大量死亡或消失;(3)草本覆盖度显著降低,植物种类减少,多年生草本比例减少,一、二年生草本比例增加;(4)裸沙面积增加,沙丘趋于活化。本研究认为目前沙地植被的退化主要由不合理的放牧引起,并非气候因素所致。沙地适合于冬季放牧而不适合其他季节放牧。借鉴牧民的传统放牧方式,建议配合周边的典型草原区实行季节性倒场放牧,仅将沙地作为冬季营地使用,既能有效保护沙地植被又能充分发挥其畜牧价值。  相似文献   

8.
Mudumalai Wildlife Sanctuary in southern India plays an important role in biodiversity conservation, especially of large mammals, by offering habitat contiguity of about 3300 km2 with three other protected areas in the region, namely Nagarahole and Bandipur National Parks and Wynaad Wildlife Sanctuary through forest corridors between the Western Ghats and Eastern Ghats forests. The habitat linkage is crucial for large ranging animals such as elephants, which use these forest corridors for migration. Livestock grazing, a major biotic interference in forest corridors, originates from seven settlements of the Masinagudi group of villages on the eastern and the southeastern fringes of the sanctuary. Construction of a series of hydroelectric power stations, numbering about three at Singara, Marvakandy (Masinagudi) and Moyar, around the Masinagudi villages caused a rapid growth in human population (143% between 1961 and 1991), particularly the landless labourers and livestock. Free grazing by about 15 000–17 000 resident as well as migratory livestock every year in and around the forest corridors, coupled with removal of cattle dung from the forest floor, have adversely affected the forest regeneration and helped proliferation of weed species such as Lantana camara, Casia tora, C. occidentalis, Opuntia dillenii, and Ageratum conyzoides. The annual fodder production from the corridor forest could meet the demand of about two-thirds of the resident population, while the crop residues from the marginal agriculture could not support the remaining one-third livestock population. In view of such a situation, measures have been suggested to reduce livestock population and implement the ecodevelopment packages in order to ensure the corridor connectivity for the long-term conservation of the elephant population.  相似文献   

9.
This paper incorporates the indigenous ecological knowledge (IEK) of the Maasai pastoralists and ecological methods to assess effects of grazing and cropping on rangeland biodiversity at macro‐ and micro‐landscape scales in northern Tanzania. The joint surveys with pastoralists identified indicator plant species and their associations with micro‐landscapes and livestock grazing suitability (i.e. for cattle and small ruminant grazing), while traditional calf‐pasture reserves (alalili pl. alalilia) were evaluated for preservation of rangeland biodiversity. The macro‐landscapes comprising the cool high plateau (osupuko pl. isipuki) and montane forest highland (endim) were included in the survey. At micro‐landscape scales, the osupuko was classified into uplands (orkung'u), slopes (andamata) and dry valley bottomlands (ayarata). The micro‐landscapes were assessed in terms of herbaceous plant species and woody species richness and risks of soil erosion. Biodiversity varied at both the macro‐ and micro‐landscape scales and in accordance with the land‐use types. Greater plant species diversity and less erosion risks were found in the pastoral landscapes than in the agro‐pastoral landscapes. The calf‐grazing pastures had greater herbaceous species richness than the non‐calf pastures, which in turn had more woody species. The study concludes that the indigenous systems of landscape classification provides a valuable basis for assessing rangeland biodiversity, which ecologists should incorporate into ecological surveys of the rangelands in East Africa in the future.  相似文献   

10.
Abstract. A study of the forest lines, tree lines and the structures of the sub‐alpine forest was performed in Vallone Vallanta and in Alevé forest in the Varaita Valley (Cottian Alps, Piedmont, Italy). Forest‐ and tree lines were analysed over 1728 ha while forest structures were studied on six 3000‐m2 plots located at the tree line (2), at the forest line (2) and inside the sub‐alpine forest (2). Dendro‐ecological analysis of living plants and stumps showed that Larix decidua was more abundant in the past than today and that Pinus cembra has expanded, both upwards and within sub‐alpine forests. Age structure analysis revealed that the current sub‐alpine forest stands were established 200–220 yr ago, probably following a clearcut. At the forest lines the tree density decreases, and some trees are more than 500 yr old, whereas at the tree lines most of the trees (almost exclusively Pinus cembra) are younger than 100 yr. Growth dynamics were investigated both by observing Basal Area Increment (BAI) in the old and dominant trees, and by comparing the BAIs of classes of trees with a given cambial age range in different time periods. The results showed that the growth rates of mature Pinus cembra and Larix decidua had increased. These increments are more substantial for Pinus than for Larix. The growth rate of young trees (< 100 yr) of both species has decreased over recent decades. This could be due to competition caused by increased tree densities that have resulted from a decrease in grazing.  相似文献   

11.
Question: What is the impact of grazing regime on plant species abundance, plant growth form, plant productivity and plant nutrient concentrations in a forest steppe? Location: Hustai National Park in the forest steppe region of Mongolia. Methods: On the Stipa steppe we applied three different grazing regimes by using; (1) one type of exclosure which excluded grazing by large mammalian herbivores, mainly takh (Przewalski horse), (2) another type of exclosure that excluded both large and small (Siberian marmots) mammalian herbivores, and (3) control plots which were freely grazed. We measured species frequencies, tiller densities, plant biomass and nitrogen concentrations of the vegetation. Results: Exclusion from grazing by takh and marmots significantly increased plant standing crop, but marmot grazing and full grazing did not show significant differences. Protection from grazing decreased forage quality, shown by a lower N-concentration of the standing crop. However, this was solely the result of the lower live-dead ratio of the vegetation. The frequency of the rhizomatous Leymus chinensis decreased under reduced grazing, as did the frequency of the total of rhizomatous species. The frequency of Stipa krylovii increased under reduced grazing, as did its basal areas, tiller density and tussock height. Conclusion: Reduced grazing leads to a lower abundance of rhizomatous species and an increase in tussock species.  相似文献   

12.
We investigated the impact of deer on an isolated marginal population of Matteuccia struthiopteris and on its plant community in the northern Apennines, where in recent decades the species has decreased dramatically. Our experiment was based on a 6‐year before and after control impact (BACI) design, comparing plots with deer grazing and plots where deer were excluded. Exclusion of grazing interacted with years, increasing the size of existing plants and favoring production of sporophylls. The yearly sequence of increase and decline of ramets and sterile leaves followed the same pattern in the two treatments. This indicated that their annual variation in growth depended on the sequence of more and less favorable years. Few and short plants were associated with grazing, whereas tall plants, shrubs, and tree regeneration were associated with fenced plots. The few plants to persist and dominate on heavily grazed areas were Oxalis acetosella and Cardamine species, while the genus Rubus and tree saplings were grazing‐sensitive species in this forest. Tall herbaceous species increased in size in the fenced areas, however, M. struthiopteris drew more advantage in terms of growth of leaves, showing greater cover than other species. Thus, deer grazing is becoming a threat for the survival of M. struthiopteris in southern Europe where it is already threatened in the long term by climate change.  相似文献   

13.
Sub‐Saharan Africa (SSA) could face food shortages in the future because of its growing population. Agricultural expansion causes forest degradation in SSA through livestock grazing, reducing forest carbon (C) sinks and increasing greenhouse gas (GHG) emissions. Therefore, intensification should produce more food while reducing pressure on forests. This study assessed the potential for the dairy sector in Kenya to contribute to low‐emissions development by exploring three feeding scenarios. The analyses used empirical spatially explicit data, and a simulation model to quantify milk production, agricultural emissions and forest C loss due to grazing. The scenarios explored improvements in forage quality (Fo), feed conservation (Fe) and concentrate supplementation (Co): FoCo fed high‐quality Napier grass (Pennisetum purpureum), FeCo supplemented maize silage and FoFeCo a combination of Napier, silage and concentrates. Land shortages and forest C loss due to grazing were quantified with land requirements and feed availability around forests. All scenarios increased milk yields by 44%–51%, FoCo reduced GHG emission intensity from 2.4 ± 0.1 to 1.6 ± 0.1 kg CO2eq per kg milk, FeCo reduced it to 2.2 ± 0.1, whereas FoFeCo increased it to 2.7 ± 0.2 kg CO2eq per kg milk because of land use change emissions. Closing the yield gap of maize by increasing N fertilizer use reduced emission intensities by 17% due to reduced emissions from conversion of grazing land. FoCo was the only scenario that mitigated agricultural and forest emissions by reducing emission intensity by 33% and overall emissions by 2.5% showing that intensification of dairy in a low‐income country can increase milk yields without increasing emissions. There are, however, risks of C leakage if agricultural and forest policies are not aligned leading to loss of forest to produce concentrates. This approach will aid the assessment of the climate‐smartness of livestock production practices at the national level in East Africa.  相似文献   

14.
Questions: Does species richness and abundance accumulate with grazing protection in low productivity ecosystems with a short evolutionary history of grazing, as predicted by emerging theory? How do responses to grazing protection inform degradation history? Location: Mulga (Acacia aneura) dry forest, eastern Australia, generally considered chronically degraded by livestock grazing. Methods: Three paired exclosures (ungrazed, and macropod‐grazed) were compared with open‐grazed areas after 25 years using quadrats located on either side of the fences. Additionally, the regional flora for mulga dry forest was assessed to identify species that may have declined and could be threatened by grazing. Results: Low herbaceous biomass accumulation (<1.3 t ha?1) with full grazing protection confirmed a low productivity environment. For most plant life forms the highest species richness was in macropod‐grazed exclosures, an intermediate grazing disturbance that best approximates the evolutionary history of the environment. This was the net outcome of species that both declined and increased in response to grazing. Regeneration and subsequent self‐thinning of mulga was promoted with grazing protection, but did not confound interpretation of species richness and abundance responses. At the regional scale only 11 native species out of 407 comprising the mulga dry forest flora were identified as rare and potentially threatened by grazing. Conclusions: Significant increases in richness or abundance of native plants with grazing protection, persistence of perennial grasses, regeneration of mulga and scant evidence of a major decline in the regional flora are not consistent with established assertions that long‐grazed mulga dry forest has crossed functional thresholds that limit recovery. Further, a peak in species richness under intermediate (macropod) grazing is counter to the shape of the response predicted by emerging theory for recovery of species richness in a low productivity environment. The finding prompts a more thorough understanding of the distinction between environments with inherently low productivity and those degraded by grazing.  相似文献   

15.
Kipfer T. and Bosshard A. 2007. Low seed bank of herb species suitable for grazing hampers the establishment of wood pastures in the Swiss lowlands. Bot. Helv. 117: 159 – 167. Controlled forest grazing is expected to yield benefits for biodiversity conservation, landscape quality, and in some cases also for land use economy. In the Swiss lowlands, first attempts are being made to reintroduce forest grazing in productive beech forests, but methodic experience is still limited. One main issue concerns the development of the vegetation after forest stands have been thinned to improve light conditions: Will grassland vegetation establish spontaneously? The present study analyses the composition of the soil seed bank of four beech forest stands. The seed bank density ranged from 1’244 to 28’651 seeds m−2. Seed banks mainly consisted of forest and ruderal species; most abundant were Juncus effusus, Carex sylvatica, Rubus spp. and Clematis vitalba. Seeds of grassland plants were restricted to a few species, and their abundance in the seed bank decreased rapidly with increasing distance from the forest edge. These results reveal that there is little potential for grasslands to develop spontaneously from the seed bank. The introduction of grassland species of local origin using the green hay method is therefore recommended to prevent soil degradation during the first years of grazing, to fulfil minimal biodiversity requirements and to lower the risk of an establishment of neophytes and other problematic plant species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Manuskript angenommen am 2. September 2007  相似文献   

16.
Abstract Mediterranean ecosystems have been impacted for millennia by human practices, particularly agricultural and pastoral activities. Since the middle of the nineteenth century, land-use abandonment has lead to scrubland and forest expansion, especially in mountain areas of the northern Mediterranean basin. This study aimed at analyzing how grazing history affects subsequent forest dynamics at a site located in the limestone foothills of the Southern Alps (France). The approach combines archival documents and dendroecology to investigate the origin, establishment and development of forest following land-use abandonment. Scots pine (Pinus sylvestris) started to colonize quickly in the 1870s, with the recruitment rate increasing during the first decade of the 1900s, associated with a decline of the local human population and regional livestock. Since the 1960s, European beech (Fagus sylvatica) and silver fir (Abies alba) have regenerated in the understorey of Scots pines. Regeneration is controlled by a threshold of grazing pressure. Noticeably, the rate of reforestation differs according to the former land-use, with pastures being colonized more quickly than ploughed areas. Different previous land-uses leading to different times of grazing cessation, combined with variable herbaceous competition explain the contrasting micro-scale regeneration patterns. Agricultural land-use and abandonment are both significant driving forces of vegetation dynamics. Knowledge of these factors is thus necessary to understand present patterns and to predict future forest pathways in the Mediterranean mountains.  相似文献   

17.
Reindeer Rangifer tarandus L. grazing shapes forest vegetation, microclimate, and soil respiration in Lapland, especially due to grazing on lichens (Cladina). We studied how these changes and their magnitude affect ground‐dwelling species of beetle families Carabidae (predators) and Curculionidae (herbivores), by using pitfall traps to collect invertebrates from pairs of grazed and ungrazed study plots over a wide range of site types. Changes in abundance, composition, richness and diversity of beetle assemblage were tested in relation to magnitude of the impacts on vegetation. The species compositions of Carabidae and Curculionidae differed between grazed and ungrazed plots in all sites. The relative difference between grazed and ungrazed plots in the number of individuals increased linearly with the impact of reindeer on vegetation cover. Carabid beetles, as a family, were more common in grazed plots in all sites. Curculionid beetles were more common in ungrazed plots in the birch dominated sites. This difference was mainly due to the species that feeds on deciduous leaves. In the pine dominated sites with high Cladina cover and more changes in ground vegetation, the number of curculionids feeding on conifers was higher in grazed plots. Species richness and diversity (H’) of both families were higher in grazed plots. Of the total 27 species, 11 were found only in grazed plots, while not a single species was found only in ungrazed plots. The relative difference between plots in diversity and evennes (H’/H'max) had humped response to the difference in Cladina cover. The diversity values were greater in grazed plots at the intermediate levels of grazing impact, and only in sites with very low or extremely high Cladina cover difference was the diversity higher in ungrazed plots. The response of beetle diversity resembled the hypotheses suggested for the relationship between grazing and vegetation diversity: greatest positive effect at intermediate grazing intensity and negative effects at unproductive sites.  相似文献   

18.
South American Polylepis mountain forests are endangered due to centuries of logging, fire clearance, and intensive livestock grazing. Polylepis australis (Rosaceae) dominates the tree canopy in the Central Argentinean Mountains, where livestock have been excluded or reduced to very low densities over wide areas. Lowered plant and bird diversity in these abandoned grazing areas suggest that some livestock grazing may be beneficial for conservation purposes. Our study aimed to determine whether this may also be true for forest regeneration. In 300 plots of 1 m2 distributed in sub-regions of high to moderate grazing pressure as well as grazing exclusion, we recorded the presence of P. australis seedlings and grazing indicators. Topographical parameters as well as vegetation and soil characteristics were also assessed. Seedling frequencies were highest in the region with moderate grazing, intermediate with grazing exclusion, and the lowest with high grazing pressures. Logistic regression models revealed that seedling occurrence was highest close to seeder trees, with intermediate litter coverage and at intermediate altitudes above sea level. Since grazing ultimately affects seeder tree occurrence through browsing and reduces litter cover and predominates in higher areas, we conclude that grazing is an important driving factor for P. australis regeneration. We confirm previous studies determining high grazing pressure to be detrimental for P. australis regeneration, but also provide data suggesting that its complete exclusion may not be recommendable either. Management should aim to alternate between a moderate grazing intensity to promote seedling recruitment, with subsequent exclusion to accelerate the growth of the established seedlings.  相似文献   

19.
Regeneration is known to be limited at many temperate tree lines, but very little data is available on the impacts of altitude and anthropogenic disturbance on regeneration patterns along tropical tree lines. The study focused on the reproductive traits of two Polylepis species in the Páramo de Papallacta in Ecuador along an altitudinal gradient, and involved different intensities of cattle trampling within subsequent altitudinal ranges. We analyzed flowering, fruit set, seed viability, germination, and seedling establishment as well as stand structure of Polylepis incana and P. pauta. The numbers of P. incana inflorescences and seedlings per m2 showed a marginally significant decrease with increasing altitude. Mean tree height was significantly lower at higher altitudes, while stem number increased. The number of P. pauta inflorescences also decreased significantly upslope. In both forest types, trampling was found to have a positive impact on seedling abundance, presumably due to the removal of the litter layer. Thus, there was no evidence of negative effects of moderate cattle grazing on both tree line species. However, sapling establishment was minimal inside the forest stands at all altitudes and grazing levels, and we consequently observed a low proportion of narrow stems within all investigated forests. Our results show that, along with vegetative growth limitations of adult trees, important regeneration traits such as seedling and inflorescence numbers are also influenced by altitude, which might contribute to the formation of the upper tree line. Nevertheless, recruitment in the forest interior was low overall indicating that further factors, such as light conditions, affect regeneration of the studied species.  相似文献   

20.
Abstract. Composition of hill slope vegetation was studied in a semi-arid part of upland Tanzania where all grazing had been banned for 12 yr. The hills had been severely overgrazed previously and suffered from heavy gully and sheet erosion. Eight vegetation types are described. Floristic gradients revealed by numerical ordination techniques were found to be related mainly to degree of erosion, soil type and succession. The more or less bare soil that prevailed after grazing had ceased is now covered by grassland, woodland and immature secondary forest. The grasslands are still characterized by early successional species and they will probably remain open grassland as long as frequent burning continues. Brachystegia woodlands may have developed during earlier periods when the field layer was sparse due to grazing. The grazing had reduced the frequency of fire which in turn promoted the establishment of Brachystegia spp. Secondary forests are believed to have developed mainly where fires were not frequent, particularly at higher altitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号