首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
任何个体最终都避免不了死亡 ,个体死亡时的年龄就是寿命。人的寿命到底有多大 ?如何确定人的寿命 ?这些都是人们普遍关心的问题 ,也是生物学中的重大问题。1 期望寿命1.1 定义 在人口群体中 ,不同个体的寿命不同 ,根据特定人群生存和死亡的年龄分布 ,计算得到的各个年龄人群平均继续生存的年数 ,即为期望寿命。 0岁时的期望寿命称为平均寿命 ,平均寿命用以反映同时出生的一群人预期可能存活的岁数。由于期望寿命和平均寿命分析的是特定人群的实际寿命 ,而人的实际寿命与其身体的健康状况密切相关 ,因此它常被用来作为评价特定人口群体的…  相似文献   

2.
根田鼠生命表和繁殖的研究   总被引:11,自引:0,他引:11  
根据229((?)(?)124,♀♀105)只实验室出生的幼鼠生长、繁殖和死亡观察根田鼠雄性和雌性的期望寿命(c_0)分别为3.040(即39周)和3.176(即41周);平均死亡率((?))分别为0.283和0.272,两者很接近。妊振期平均为20.6天,哺乳期在15—20天,产仔数平均为4.56只。实验种群经一世代后的净增殖率(R_0)为2.0456,内禀增长率(r_m)为0.0787/月。  相似文献   

3.
阿拉善黄鼠的生命表及繁殖   总被引:2,自引:1,他引:1  
陈敬先 《兽类学报》1991,11(2):138-142
将采自野生种群的阿拉善黄鼠(Spermophilus dauricus alaschanicus Buechner)( 下称黄鼠)样本划分为8个年龄间隔,然后编制生命表。结果表明,黄鼠的平均死亡率(qx)为0.7512(♂)和0.6222(♀),平均寿命为1.3311年(♂)和1.1073年(♀)。0-l岁龄黄鼠的期望寿命(ex)为0.8311年(♂)和1.1073年(♀)。世代净增殖率(Ro)每代为l.7327。种群内禀增长率(瞬时)(rm)为0.1433,世代平均时间(T)为3.8346年,周限增长率(r)为1.1541/年。  相似文献   

4.
六种寄主植物对二点叶蝉生长发育和繁殖的影响   总被引:11,自引:0,他引:11  
在25℃恒温条件下,以盆栽玉米、小麦、高粱、水稻、谷子、大麦及虮子草为食料,研究了食物对二点叶蝉实验种群生长发育及繁殖的影响.结果表明,二点叶蝉在虮子草上不能完成世代发育.在其余6种寄主植物上各虫态的发育历期、存活率、雌成虫寿命及单雌平均产卵量存在显著差异.从卵到若虫期的发育历期在高粱上最短(24.1d),玉米上次之(24.2d),小麦上最长(25.5d);取食水稻时。若虫的存活率(40.8%)最低,成虫寿命最短(12.2d),单雌平均产卵量(12.3粒)也显著低于其它5种寄主植物.用生命表参数综合评价表明,6种寄主植物中,谷子和玉米最适合二点叶蝉生长发育及繁殖。其次分别为高粱、大麦、小麦、水稻。  相似文献   

5.
海南坡鹿种群生活史特征及种群动态趋势预测   总被引:1,自引:1,他引:0  
本文应用生命表和Leslie矩阵等生活史常规研究方法,分析了生存于海南邦溪自然保护区的国家I级珍稀濒危哺乳动物海南坡鹿种群的年龄结构、特定年龄存活率、特定年龄繁殖率、初次产仔年龄、产仔季节、性比、寿命等重要生活史特征,并预测其种群动态趋势.邦溪海南坡鹿种群平均寿命4.6岁,雌性平均寿命略高于雄性,分别为4.7岁,4.4岁;雌性平均初次产仔年龄为24月龄;雌性平均性成熟年龄为16月龄;雌性最长繁殖寿命为8.5岁,雄性最长繁殖寿命约为4岁;成年雌性平均一年一胎,胎仔数为1;新生幼仔数量雄性大于雌性,性比为1.33∶1;种群动态生命表的分析结果表明,各年龄段雄性存活率高于雌性.幼体(0~2岁)死亡数雌性高于雄性,壮年成体(3~8岁)死亡数雄性高于雌性,老体(9岁~)死亡数两性几乎相等.雌性幼体受到较强的自然选择作用,体弱个体被淘汰;壮年雄体为繁殖付出较高的代价,死亡个体数量较高.Leslie矩阵预测结果表明,如果影响出生率和死亡率的因子不变,种群数量将逐年增长,周限增长率为λ≈1.011; 种群内禀增长率r≈0.012;种群世代增长率R0 ≈1.06;世代长度T≈5.12年.产仔时间为秋季与冬季,春、夏季节不产仔,此为适应海南岛独特的热带环境选择压力的结果.  相似文献   

6.
张文辉  祖元刚 《植物研究》1998,18(1):118-118
在不同生境条件下的固定样地内,观察分析了裂叶沙参种群的地上部分在一个生长季的生长过程和物侯特点。生长于灌木群落下,裂叶沙参地上部分生物量生长(y,g)与时间(x、d)的关系可以用公式:y=0.2872-0.0187x+0.0009x^2表示;地上各器官茎、叶、花枝、花芽、花和果的生物量(y,克)与生长时间(x,天)的关系可以用公式:y=b0+b1x+b2x^2表示。从4月10日到8月15日的速生期  相似文献   

7.
细根寿命对细根周转具有重要影响, 是生态系统C分配格局和养分循环研究的重要内容。该文利用微管法研究了流动沙地和固定沙地生长的差不嘎蒿(Artemisia halodendron)灌丛细根生长的动态过程, 通过Kaplan-Meier方法估计了细根存活率和中位值寿命, 并做存活曲线, 用对数轶检验比较了不同生境、不同土壤层次和不同月出生细根寿命的差异程度, 同时分析了不同样地细根寿命同土壤全氮、有机质、体积含水量和容重的相关关系。结果表明, 流动沙地和固定沙地差不嘎蒿细根具有相似的存活曲线, 但在各观测点, 流动沙地的细根累积存活率均高于固定沙地, 流动沙地细根中位值寿命(47 d)显著高于固定沙地(35 d)。细根寿命同各样地的土壤全氮和土壤容重呈显著的负相关关系, 同土壤水分呈显著的正相关关系, 但多元回归分析表明, 土壤水分是引起细根寿命变异的关键因素。土层深度对流动沙地细根寿命没有显著影响, 但两生境深层30~50 cm的细根寿命均显著高于上层(10~30 cm)。不同出生月的细根寿命显著不同, 流动沙地和固定沙地细根寿命具有相似的季节变化规律, 春季(4、5月)细根的寿命最长(71 d), 秋季(8、9月)次之(61 d), 夏季(6、7月)最短(39 d)。  相似文献   

8.
为了更好地执行国务院发布的《关于在我国统一实行法定计量单位的命令》的规定,根据国标(GB3100~3102-93)标准,单位符号一般用英文小写(正体),来源于人名的单位,其符号的首字母大写,只有体积单位升例外,它的符号用“L(l)”,推荐采用L。现将本刊常用计量单位符号及与之容易混淆的符号介绍如下,希望作者参照执行。时间:年用a,不用y,yr;星期、周(无符号),不用wk;月(无符号),不用mo;日用d,不用day;小时用h,不用hr;分钟用min,不用m;秒用s,不用sec表示。溶液浓度:用mol/L,不用M(克分子浓度)和N(当量浓度)等非许用单位表示。百分浓度:务必注明…  相似文献   

9.
贺达汉  田畴 《昆虫学报》1990,33(4):437-443
本文分析了七级恒温和五组变温条件下白茨粗角萤叶甲(Diorhabda rybakowi Weise)的种群生长,组建了生命表.得知不同恒温与幼期存活率的关系呈二次曲线型变化;变温对幼期存活率的影响受其变幅大小的影响,23—31℃的变温有利于该虫的世代存活.成虫寿命和产卵量随试验温度上升分别呈现“S”形下降和二次曲线趋势;变温下成虫寿命延长,产卵量明显增高.采用Weibull函数模型能很好地模拟试验温度和温周期条件下种群世代死亡率的变化.在19—35℃恒温下,种群周限增长率可用二次曲线方程表示.在17.8—37.8℃种群生长为增长趋势.在变温下,种群周限增长率和变温的变幅呈负相关.在平均温度为27℃、变幅为25.1℃时,种群生长保持稳定.  相似文献   

10.
《微生物学杂志》2005,25(4):67-67
为了更好地执行国务院发布的《关于在我国统一实行法定计量单位的命令》的规定,根据国标(GB3100~3102-93)标准,单位符号一般用英文小写(正体),来源于人名的单位,其符号的首字母大写,只有体积单位升例外,它的符号用“L,(l)”,推荐采用L。现将本刊常用计量单位符号及与之容易混淆的符号介绍如下,希望作者参照执行。时间:年用a,不用y,yr;星期、周(无符号),不用wk;月(无符号),不用mo;日用d,不用day;小时用h,不用hr;分钟用min,不用m;秒用s,不用sec表示。溶液浓度:用mol/L,不用M(克分子浓度)和N(当量浓度)等非许用单位表示。百分浓度:务必注明…  相似文献   

11.
Food intake carries many potential risks which may impair an animal's reproductive success not only in the current breeding cycle, but also for the rest of its lifetime. We examine the lifetime trade-off between the costs and benefits of food intake by presenting a simple animal foraging model, where each unit of food eaten carries with it a risk of mortality. We show that the optimal food intake rate over an animal's lifetime, for both semelparous and iteroparous animals, is not maximal. Instead, animals are required to strike a balance between the immediate reproductive benefits of gathering food and the future reproductive costs incurred by the food's mortality risk. This balance depends upon the lifespan of the animal as well as the nature of the risk. Different mortality risks are compared and it is shown that a mortality risk per unit time spent foraging is not, in general, equivalent to a mortality risk per unit of food consumed. The results suggest that a mortality risk per unit of food consumed, such as that presented by the presence of a toxin or of a parasite in the diet, has important consequences for feeding behaviour and is a possible factor involved in food intake regulation.  相似文献   

12.
微生物细胞工厂以可再生资源为原料,为工业化学品的可持续生产提供了一种有前景的替代方案。然而,不适的外界环境显著影响了微生物细胞的存活率,降低了微生物细胞工厂的生产性能。通过延长微生物细胞的时序寿命,可以显著提升微生物细胞工厂的生产性能。首先,基于存活率的变化建立了细胞时序寿命和半时序寿命的评价体系;然后,发现半胱氨酸、肌肽、氨基胍和氨基葡萄糖抗衰老药物可以使大肠杆菌Escherichia coli细胞的时序寿命分别延长80%、80%、50%和120%;最后,延长E. coli时序寿命可以显著改善E. coli细胞工厂的生产性能,可以用于改善具有本源代谢合成路径的E. coli细胞工厂的生产性能,使乳酸和丙酮酸的得率分别提升30.0%和25.0%,也可以用于改善具有异源代谢合成路径的E. coli细胞工厂的生产性能,使苹果酸的得率提升27.0%。这些研究结果表明延长E. coli细胞寿命提供了一种潜在的改善细胞工厂的生产性能的方法。  相似文献   

13.
Reproductive success is a key component of lifetime efficiency – which is the ratio of energy in milk (MJ) to energy intake (MJ) over the lifespan, of cows. At the animal level, breeding and feeding management can substantially impact milk yield, body condition and energy balance of cows, which are known as major contributors to reproductive failure in dairy cattle. This study extended an existing lifetime performance model to incorporate the impacts that performance changes due to changing breeding and feeding strategies have on the probability of reproducing and thereby on the productive lifespan, and thus allow the prediction of a cow’s lifetime efficiency. The model is dynamic and stochastic, with an individual cow being the unit modelled and one day being the unit of time. To evaluate the model, data from a French study including Holstein and Normande cows fed high-concentrate diets and data from a Scottish study including Holstein cows selected for high and average genetic merit for fat plus protein that were fed high- v. low-concentrate diets were used. Generally, the model consistently simulated productive and reproductive performance of various genotypes of cows across feeding systems. In the French data, the model adequately simulated the reproductive performance of Holsteins but significantly under-predicted that of Normande cows. In the Scottish data, conception to first service was comparably simulated, whereas interval traits were slightly under-predicted. Selection for greater milk production impaired the reproductive performance and lifespan but not lifetime efficiency. The definition of lifetime efficiency used in this model did not include associated costs or herd-level effects. Further works should include such economic indicators to allow more accurate simulation of lifetime profitability in different production scenarios.  相似文献   

14.
Food availability can vary widely for animals in nature and can have large effects on growth, reproduction and survival. While the consequences of food limitation for animals have been extensively studied, significant questions still remain including how ontogenetic variation in food availability contributes to lifetime reproductive success. We tested the effects of juvenile and adult food limitation on the lifetime reproductive success and lifespan of bridge spiders, Larinioides sclopetarius. Food availability was manipulated (low or high) over the entire juvenile and adult stage in a full‐factorial design and reproductive output and lifespan were measured. Juvenile and adult food limitation both reduced lifetime egg and hatchling production with effect sizes that were not significantly different from each other. Unlike some other arthropods, where juvenile food limitation reduces fecundity by reducing adult body size, body size was not affected by juvenile diet in bridge spiders. Clutch size was also significantly reduced by both juvenile and adult food limitation. The effect of adult diet on clutch size was stronger than that of juvenile diet. Juvenile and adult food limitation both extended total lifespan, and adult food limitation extended adult longevity (i.e. time from maturation to death). However, juvenile food limitation decreased adult longevity, in contrast to what would be predicted by dietary or caloric restriction. Compensatory feeding and growth are widely recognized mechanisms through which animals can ameliorate some of the negative effects of periods of food limitation. Yet our results combined with studies of a range of other species suggest that there may be lasting consequences of juvenile food limitation on lifetime reproductive success that cannot be compensated for by adult feeding in some species.  相似文献   

15.
Over 97% of the 203 male medflies monitored in a lifetime study of their behaviour exhibited what we term supine behaviour (temporary upside-down orientation) starting an average of 16.1 days prior to their death (mean lifespan of 61.7 days). Supine onset increased the mortality risk by 39.5-fold and a unit increase in supine level increased mortality by 26.3%. The discovery that behavioural traits in insects can be used as biomarkers of their health and to predict their time to death has important implications regarding research on morbidity dynamics, behavioural neuroethology and gerontology, and the interpretation of longevity extension in model organisms.  相似文献   

16.
Although anthropogenic change is often gradual, the impacts on animal populations may be precipitous if physiological processes create tipping points between energy gain, reproduction or survival. We use 25 years of behavioural, diet and demographic data from elephant seals to characterise their relationships with lifetime fitness. Survival and reproduction increased with mass gain during long foraging trips preceding the pupping seasons, and there was a threshold where individuals that gained an additional 4.8% of their body mass (26 kg, from 206 to 232 kg) increased lifetime reproductive success three-fold (from 1.8 to 4.9 pups). This was due to a two-fold increase in pupping probability (30% to 76%) and a 7% increase in reproductive lifespan (6.0 to 6.4 years). The sharp threshold between mass gain and reproduction may explain reproductive failure observed in many species and demonstrates how small, gradual reductions in prey from anthropogenic disturbance could have profound implications for animal populations.  相似文献   

17.
Lifetime gains of host-feeding in a synovigenic parasitic wasp   总被引:3,自引:0,他引:3  
Abstract. Understanding behavioural decisions relative to host use for feeding or reproduction by foraging parasitoids requires not only the study of metabolic pathways followed by nutrients, but also the quantification of lifetime fitness gains of each alternative behaviour. By using a combination of observational and manipulative approaches, the lifetime host‐feeding gains are measured both in terms of fecundity and longevity in the parasitoid Eupelmus vuilletti. Host‐feeding increases both egg production and longevity. The increase in fecundity is mainly determined by the amount of lipids obtained whereas the lifespan extension is mainly determined by carbohydrates. Proteins obtained through host‐feeding have been implicated previously in egg production by parasitoids but protein intake has no effect on fecundity and longevity in E. vuilletti. The amount of nutrients gained through host‐feeding and invested in eggs is variable and changes over the lifetime of the animal. Therefore, lifetime feeding gains are best understood through the construction of dynamical budgets running over the entire lifespan of an insect.  相似文献   

18.
Sex allocation theory predicts that parents are selected to bias their progeny sex ratio (SR) toward the sex that will benefit the most from parental quality. Because parental quality may differentially affect survival of sons and daughters, a pivotal test of the adaptive value of SR adjustment is whether parents overproduce offspring of the sex that accrues larger fitness advantages from high parental quality. However, this crucial test of the long‐term fitness consequences of sex allocation decisions has seldom been performed. In this study of the barn swallow (Hirundo rustica), we showed a positive correlation between the proportion of sons and maternal annual survival. We then experimentally demonstrated that this association did not depend on the differential costs of rearing offspring of either sex. Finally, we showed that maternal lifespan positively predicted lifespan of sons but not of daughters. Because in barn swallows lifespan is a strong determinant of lifetime reproductive success, the results suggest that mothers overproduce offspring of the sex that benefits the most from maternal quality. Hence, irrespective of mechanisms causing the SR bias and mother–son covariation in lifespan, we provide strong evidence that sex allocation decisions of mothers can highly impact on their lifetime fitness.  相似文献   

19.
There is an intense search for longevity genes in both animal models and humans. Human family studies have indicated that a modest amount of the overall variation in adult lifespan (approximately 20–30%) is accounted for by genetic factors. But it is not known if genetic factors become increasingly important for survival at the oldest ages. We study the genetic influence on human lifespan and how it varies with age using the almost extinct cohorts of Danish, Finnish and Swedish twins born between 1870 and 1910 comprising 20,502 individuals followed until 2003–2004. We first estimate mean lifespan of twins by lifespan of co-twin and then turn to the relative recurrence risk of surviving to a given age. Mean lifespan for male monozygotic (MZ) twins increases 0.39 [95% CI (0.28, 0.50)] years for every year his co-twin survives past age 60 years. This rate is significantly greater than the rate of 0.21 (0.11, 0.30) for dizygotic (DZ) males. Females and males have similar rates and these are negligible before age 60 for both MZ and DZ pairs. We moreover find that having a co-twin surviving to old ages substantially and significantly increases the chance of reaching the same old age and this chance is higher for MZ than for DZ twins. The relative recurrence risk of reaching age 92 is 4.8 (2.2, 7.5) for MZ males, which is significantly greater than the 1.8 (0.10, 3.4) for DZ males. The patterns for females and males are very similar, but with a shift of the female pattern with age that corresponds to the better female survival. Similar results arise when considering only those Nordic twins that survived past 75 years of age. The present large population based study shows genetic influence on human lifespan. While the estimated overall strength of genetic influence is compatible with previous studies, we find that genetic influences on lifespan are minimal prior to age 60 but increase thereafter. These findings provide a support for the search for genes affecting longevity in humans, especially at advanced ages.  相似文献   

20.
Natural and sexual selection arise when individual fitness varies according to focal traits. Extra‐pair paternities (EPPs) can affect the intensity of selection by influencing variance in fitness among individuals. Studies of selection require that individual fitness is estimated using proxies of lifetime reproductive success (LRS). However, estimating LRS is difficult in large, open populations where EPPs cause reallocation of biological paternity. Here, we used extensive field sampling to estimate LRS in a population of barn swallows (Hirundo rustica) to estimate selection on lifespan and ornamental traits of males. We found selection on lifespan mediated both by within‐ and extra‐pair fertilization success and selection on tail length mediated by within‐ but not extra‐pair fertilization success. In addition, we found selection on tail white spots via extra‐pair fertilization success after controlling for selection on other traits. These results were not confounded by factors that hamper studies of LRS, including nonexhaustive sampling of offspring and biased sampling of males. Hence, natural and sexual selection mediated by LRS operates on lifespan, tail length, and size of the tail white spots in barn swallows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号