首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Summary Models of the evolution of seed dormancy reveal that dormancy is favoured either when opportunities for establishment vary over time and when there is wide variation in the probability of success, or when the probability of success is limited by frequency dependence. Empirical evidence supporting the temporal heterogeneity hypothesis exists, but there is scant evidence for dormancy being favoured by frequency dependent competition among seedlings. We test the hypothesis that the intensity of between-sib competition should favour a positive relationship between maternal fecundity and seed dormancy. This hypothesis is supported for the rare, vernal pool annual,Pogogyne abramsii: the proportion of dormant offspring was significantly higher among high fecundity mothers than among other mothers. Dormancy inP. abramsii is controlled by the seed coat, a maternal tissue, so delaying germination favours the inclusive fitness of mothers by reducing the potential for competition among siblings. Seed weight and time to first germination varied significantly amongP. abramsii plants and mean seed weight increased linearly with plant biomass. Seed weight and seed number are independently regulated by plant size. Overall, seed weight varied 10-fold and variability in seed weight within mothers was not explained by plant biomass, seed yield or mean seed weight. GerminableP. abramsii seeds were significantly heavier than dormant seeds, and germinable seeds heavier than 0.20 mg germinated more rapidly than those smaller than 0.20 mg.  相似文献   

2.
The genetic basis of seed dormancy, a key life history trait important for adaptive evolution in plant populations, has yet been studied only using seeds produced under controlled conditions in greenhouse environments. However, dormancy is strongly affected by maternal environmental conditions, and interactions between seed genotype and maternal environment have been reported. Consequently, the genetic basis of dormancy of seeds produced under natural field conditions remains unclear. We examined the effect of maternal environment on the genetic architecture of seed dormancy using a recombinant inbred line (RIL) population derived from a cross between two locally adapted populations of Arabidopsis thaliana from Italy and Sweden. We mapped quantitative trait loci (QTL) for dormancy of seeds produced in the greenhouse and at the native field sites of the parental genotypes. The Italian genotype produced seeds with stronger dormancy at fruit maturation than did the Swedish genotype in all three environments, and the maternal field environments induced higher dormancy levels compared to the greenhouse environment in both genotypes. Across the three maternal environments, a total of nine dormancy QTL were detected, three of which were only detected among seeds matured in the field, and six of which showed significant QTL × maternal environment interactions. One QTL had a large effect on dormancy across all three environments and colocalized with the candidate gene DOG1. Our results demonstrate the importance of studying the genetic basis of putatively adaptive traits under relevant conditions.  相似文献   

3.
To determine whether genetic differences in fitness components exist among seeds and seedlings in a natural population, weighed propagules of six parents of Anthoxanthum odoratum from a reciprocal diallel cross were planted into the parental source population, a mown field. Seed families of maternal genotypes differed in germination success, while paternal families showed no detectable differences. Differential germination success could not be attributed to propagule weight. Seed families ranked differently in germination percentage in different blocks. No survivorship differences among parental seed families could be detected. There were significant cross × block × germination and cross × block × survivorship interactions; different crosses performed better or worse in different blocks. In some cases, crosses sired by different fathers within a maternal seed family differed in germination or survivorship, suggesting that natural selection may be capable of discriminating among juvenile genotypes within a maternal family despite the presence of large overall maternal effects. These results indicate that seedling establishment may differ according to genotype and that microsite heterogeneity may maintain genetic variation in juvenile traits in natural plant populations.  相似文献   

4.
Seed size is normally distributed for many annual species, while mature plant size is frequently positively skewed. A study was conducted to determine the influence of seed size and the role of genetic differences in determining relative seedling size for Ludwigia leptocarpa. Seed size had a significant effect on percentage germination and time of seed germination but no effect on dry weight or leaf area of seedlings. Seed size and spacing had a significant effect on seedling dry weight for plants grown under competition, while relative day of emergence had no effect. Familial (genetic) differences were found in average seed weight between maternal plants, but not in average number of days to germination, average weight of seeds which germinated, or shoot dry weight. It is concluded that neither seed size alone nor genetic differences between plants are directly responsible for the development of size hierarchies in Ludwigia leptocarpa populations. Large seed size does convey an advantage in growth when plants from seeds of differing initial size interact.  相似文献   

5.
Abstract Seed characteristics are key components of plant fitness that are influenced by temperature in their maternal environment, and temperature will change with global warming. To study the effect of such temperature changes, Arabidopsis thaliana plants were grown to produce seeds along a uniquely designed polyethylene tunnel having a thermal gradient reflecting local global warming predictions. Plants therefore experienced the same variations in temperature and light conditions but different mean temperatures. A range of seed‐related plant fitness estimates were measured. There were dramatic non‐linear temperature effects on the germination behaviour in two contrasting ecotypes. Maternal temperatures lower than 15–16 °C resulted in significantly greater primary dormancy. In addition, the impact of nitrate in the growing media on dormancy was shown only by seeds produced below 15–16 °C. However, there were no consistent effects on seed yield, number, or size. Effects on germination behaviour were shown to be a species characteristic responding to temperature and not time of year. Elevating temperature above this critical value during seed development has the potential to dramatically alter the timing of subsequent seed germination and the proportion entering the soil seed bank. This has potential consequences for the whole plant life cycle and species fitness.  相似文献   

6.
7.
A growing body of evidence indicates that phenotypic selection on juvenile traits of both plants and animals may be considerable. Because juvenile traits are typically subject to maternal effects and often have low heritabilities, adaptive responses to natural selection on these traits may seem unlikely. To determine the potential for evolutionary response to selection on juvenile traits of Nemophila menziesii (Hydrophyllaceae), we conducted two quantitative genetic studies. A reciprocal factorial cross, involving 16 parents and 1960 progeny, demonstrated a significant maternal component of variance in seed mass and additive genetic component of variance in germination time. This experiment also suggested that interaction between parents, though small, provides highly significant contributions to the variance of both traits. Such a parental interaction could arise by diverse mechanisms, including dependence of nuclear gene expression on cytoplasmic genotype, but the design of this experiment could not distinguish this from other possible causes, such as effects on progeny phenotype of interaction between the environmental conditions of both parents. The second experiment, spanning three generations with over 11,000 observations, was designed for investigation of the additive genetic variance in maternal effect, assessment of paternal effects, as well as further partitioning of the parental interaction identified in the reciprocal factorial experiment. It yielded no consistent evidence of paternal effects on seed mass, nor of parental interactions. Our inference of such interaction effects from the first experiment was evidently an artifact of failing to account for the substantial variance among fruits within crosses. The maternal effect was found to have a large additive genetic component, accounting for at least 20% of the variation in individual seed mass. This result suggests that there is appreciable potential for response to selection on seed mass through evolution of the maternal effect. We discuss aspects that may nevertheless limit response to individual selection on seed mass, including trade-offs between the size of individual seeds and germination time and between the number of seeds a maternal plant can mature and their mean size.  相似文献   

8.
为明确车桑子[Dodonaea viscosa(L.)Jacq.]种子的休眠特性和地理变异特性,测定了云南省元谋县凉山乡(属北亚热带区)和坝区苴林乡(属南亚热带区)车桑子种子形态,观察了种子的休眠特性和萌发特性。结果表明,两地的车桑子种子都具有物理休眠特性,经热水处理的种子萌发率显著高于未处理的种子(P=0.001)。两地种子在长、宽、长/宽以及种子百粒重上十分接近,其萌发特征和幼苗生长特征没有表现出显著差异。因此,坝区苴林乡和凉山乡种子并未发生地理变异,两地均适合车桑子采种,但在播种前应进行种子休眠破除,以提高种子发芽率。  相似文献   

9.
Worldwide, there is relatively little information on seed dormancy and germination of tropical montane species. Our aim was to help fill this knowledge gap by conducting seed dormancy/germination studies on woody species from this vegetation zone in Hawai`i. All species had water-permeable seeds with a fully developed embryo. Seeds of 29 species (23 genera) were incubated in light/dark at 15/6, 20/10 and 25/15°C and germination monitored at 2-week intervals for 16–128 weeks. Seeds of Chenopodium oahuense, Dubautia menziesii and Silene lanceolata were non-dormant (ND) and those of 26 other species had physiological dormancy (PD); 10 of the 26 species had conditional PD. The optimum germination temperature regime(s) was (were) 25/15°C, 17 species; 25/10 and 20/10°C, 2; 20/10°C, 6; 20/10 and 15/6°C, 2; and 15/6°C, 2. Worldwide, PD in the woody genera included in our study is more common than ND. In addition to its contribution to the world biogeography of seed dormancy/germination, this study will be useful to conservation biologists who need to germinate seeds of tropical montane species.  相似文献   

10.
11.
Li Y  Yang H  Xia J  Zhang W  Wan S  Li L 《PloS one》2011,6(12):e28601

Background

The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.

Methodology/Principal Findings

In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.

Conclusion/Significance

The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change.  相似文献   

12.
Hybridisation between crops and their wild relatives may promote the evolution of weeds. Seed germination and dormancy are the earliest life‐history traits and are highly influenced by the maternal parent. However, the ecological role of the maternal effect on seed traits in the evolution of crop–wild hybrids has received little attention. In this study, we test the relative importance of maternal and hybridisation effects on seed traits of the first generation of crop–wild sunflower hybrids (Helianthus annuus). Seed germination was tested in two wild populations with contrasting dormancy, two cultivated materials and their reciprocal crosses at four different times after harvest and three different temperatures. Seed germination at each of the four times, after ripening response and secondary dormancy were recorded along with four morphological traits. Additionally, the pericarp anatomy was analysed with light and scanning electron microscopy. We observed strong maternal effects on all seed traits. Seed germination, morphology and pericarp anatomy differed largely between the crop and wild seeds and these traits in the crop–wild hybrids resembled their female parent. Slight but significant hybridisation effects were observed in germination, mainly in seeds produced on wild plants. Crop hybridisation changed seed germination, the after ripening response and secondary dormancy in the crop direction. Morphological and anatomical traits associated with domestication strongly correlated with the observed differences in seed germination and dormancy in crop–wild sunflower hybrids. The large maternal effects along with the evolutionary divergence in seed traits were responsible for the large phenotypic differences observed in crop–wild hybrids with the same genetic composition. Wild‐like seed traits of hybrids suggest that there are no barriers to crop gene introgression at the seed level whereas crop‐like seed traits could be strongly selected against, conditioning the selection of traits expressed later in the life cycle and in the next generations.  相似文献   

13.
Maternal environments typically influence the phenotype of their offspring. However, the effect of the paternal environment or the potential for joint effects of both parental environments on offspring characters is poorly understood. Two populations of Campanula americana, a woodland herb with a variable life history, were used to determine the influence of maternal and paternal light and nutrient environments on offspring seed characters. Families were grown in the greenhouse in three levels of light or three levels of nutrients. Crosses were conducted within each environmental gradient to produce seeds with all combinations of maternal and paternal environments. On average, increasing maternal nutrient and light levels increased seed mass and decreased percentage germination. The paternal environment affected seed mass, germination time, and percentage germination. However, the influence of the paternal environment varied across maternal environments, suggesting that paternal environmental effects should be evaluated in the context of maternal environments. Significant interactions between family and the parental environments for offspring characters suggest that parental environmental effects are genetically variable. In C. americana, the timing of germination determines life history. Therefore parental environmental effects on germination timing, and genetic variation in those parental effects, suggest that parental environments may influence life history evolution in this system.  相似文献   

14.
Seed is vital to the conservation of germplasm and plant biodiversity. Seed dormancy is an adaptive trait in numerous seed‐plant species, enabling plants to survive under stressful conditions. Seed dormancy is mainly controlled by abscisic acid (ABA) and gibberellin (GA) and can be classified as primary and secondary seed dormancy. The primary seed dormancy is induced by maternal ABA. Here we found that AtPER1, a seed‐specific peroxiredoxin, is involved in enhancing primary seed dormancy. Two loss‐of‐function atper1 mutants, atper1‐1 and atper1‐2, displayed suppressed primary seed dormancy accompanied with reduced ABA and increased GA contents in seeds. Furthermore, atper1 mutant seeds were insensitive to abiotic stresses during seed germination. The expression of several ABA catabolism genes (CYP707A1, CYP707A2, and CYP707A3) and GA biosynthesis genes (GA20ox1, GA20ox3, and KAO3) in atper1 mutant seeds was increased compared to wild‐type seeds. The suppressed primary seed dormancy of atper1‐1 was completely reduced by deletion of CYP707A genes. Furthermore, loss‐of‐function of AtPER1 cannot enhance the seed germination ratio of aba2‐1 or ga1‐t, suggesting that AtPER1‐enhanced primary seed dormancy is dependent on ABA and GA. Additionally, the level of reactive oxygen species (ROS) in atper1 mutant seeds was significantly higher than that in wild‐type seeds. Taken together, our results demonstrate that AtPER1 eliminates ROS to suppress ABA catabolism and GA biosynthesis, and thus improves the primary seed dormancy and make the seeds less sensitive to adverse environmental conditions.  相似文献   

15.

Background and Aims

The duration of the plant life cycle is an important attribute that determines fitness and coexistence of weeds in arable fields. It depends on the timing of two key life-history traits: time from seed dispersal to germination and time from germination to flowering. These traits are components of the time to reproduction. Dormancy results in reduced and delayed germination, thus increasing time to reproduction. Genotypes in the arable seedbank predominantly have short time to flowering. Synergy between reduced seed dormancy and reduced flowering time would create stronger contrasts between genotypes, offering greater adaptation in-field. Therefore, we studied differences in seed dormancy between in-field flowering time genotypes of shepherd''s purse.

Methods

Genotypes with early, intermediate or late flowering time were grown in a glasshouse to provide seed stock for germination tests. Secondary dormancy was assessed by comparing germination before and after dark-incubation. Dormancy was characterized separately for seed myxospermy heteromorphs, observed in each genotype. Seed carbon and nitrogen content and seed mass were determined as indicators of seed filling and resource partitioning associated with dormancy.

Key Results

Although no differences were observed in primary dormancy, secondary dormancy was weaker among the seeds of early-flowering genotypes. On average, myxospermous seeds showed stronger secondary dormancy than non-myxospermous seeds in all genotypes. Seed filling was similar between the genotypes, but nitrogen partitioning was higher in early-flowering genotypes and in non-myxospermous seeds.

Conclusions

In shepherd''s purse, early flowering and reduced seed dormancy coincide and appear to be linked. The seed heteromorphism contributes to variation in dormancy. Three functional groups of seed dormancy were identified, varying in dormancy depth and nitrate response. One of these groups (FG-III) was distinct for early-flowering genotypes. The weaker secondary dormancy of early-flowering genotypes confers a selective advantage in arable fields.  相似文献   

16.
Seed vigour is a key trait essential for the production of sustainable and profitable crops. The genetic basis of variation in seed vigour has recently been determined in Brassica oleracea, but the relative importance of the interaction with parental environment is unknown. We produced seeds under a range of maternal environments, including global warming scenarios. Lines were compared that had the same genetic background, but different alleles (for high and low vigour) at the quantitative trait loci responsible for determining seed vigour by altering abscisic acid (ABA) content and sensitivity. We found a consistent effect of beneficial alleles across production environments; however, environmental stress during production also had a large impact that enhanced the genetic difference in seed performance, measured as germination speed, resistance to controlled deterioration and induction of secondary dormancy. Environmental interaction with allelic differences in key genes that determine ABA content and sensitivity develops a continuity in performance from rapid germination through to failure to complete germination, and increasing depths of seed dormancy. The genetic–environmental interaction revealed provides a robust mechanism of bet‐hedging to minimize environmental risk during subsequent germination, and this could have facilitated the rapid change in seed behaviour (reduced dormancy and rapid germination) observed during crop domestication.  相似文献   

17.
Selection responses in natural plant populations depend on how the phenotypic variation of traits is composed. The contributions of nuclear genetic, maternal, paternal, environmental and inbreeding effects to variation in time to germination, germination percentage, and seed- and seedling size were studied in a population of Lychnis flos-cuculi. It was found that: (1) Maternal effects predominated in the determination of progeny seed size and germination characteristics; (2) Maternal environment during seed development was less important than maternal genotype; (3) Small but significant variation within maternal families could be observed among individuals sired by different fathers; (4) Additive genetic variance was significant for seedling size 4 weeks after germination. In conclusion, selection shortly after emergence will mainly favour particular maternal genotypes, while selection later in the life cycle may act upon zygotic genotypes. Inbreeding depression was significant, especially for vegetative growth. Consistent differences were found among maternal genotypes in the degree of variation in the time to germination, suggesting that selection could operate to favour polymorphic or uniform germination behaviour.  相似文献   

18.
Maternal environmental effects reflect the contribution of the maternal environment to the offspring phenotype. Maternal effects are prevalent in plants and animals and may undergo adaptive evolution and affect patterns of natural selection within and across generations. Here, we raise two generations of a rapeseed (Brassica rapa) population derived from a cross between a rapid-cycling and an oilseed genotype in competitive and noncompetitive settings. Maternal environment had little effect on average offspring phenotypes. Maternal genotypes, however, differed in the sensitivity of almost all offspring phenotypes to the maternal environment, demonstrating genetic variation in maternal effects for traits expressed throughout ontogeny. Maternal environment did not significantly affect progeny seed production, and maternal genotypes were not variable for this trait, indicating no evidence for direct maternal effects on offspring fitness. Maternal environment influenced natural selection in the progeny generation; disruptive selection acted on seed mass among seeds matured in the noncompetitive maternal environment versus no significant selection on this trait for seeds matured in the competitive maternal environment. Although maternal effects did not directly increase fitness, they did affect evolutionary potential and selection in the progeny generation. These results suggest that diverse phenotypes of both wild and cultivated B. rapa genotypes will depend on the maternal environment in which the seeds are matured.  相似文献   

19.
Summary Four genotypes of P. lanceolata were grown to maturity at combinations of two levels of atmospheric CO2 concentrations and two temperature conditions. Seed weight was determined, and seed germination and seedling growth were measured for the progeny of each genotype under the same environmental conditions. Overall, high CO2 levels decreased seed weight, increased germination percentage and rate, and increased seedling size. Families differed in their response to CO2 enrichment, and to combinations of CO2 and temperature levels for several characters. These results suggest the existence of genetic variability in P. lanceolata in response to CO2 enrichment.  相似文献   

20.
通过采集3个天然种群的金丝李(Garcinia paucinervis)果实,观察果实和种子的形态性状,分析其种群内和种群间的形态分化,观察不同种群种子萌发和幼苗生长的规律;采用四种植物生长调节剂和两种化学药剂,研究浸种对金丝李种子萌发和幼苗生长的影响。结果表明:金丝李种子长2.48~3.08 cm、宽1.49~1.67cm、百粒重392.50~438.18 g;3个种群果实和种子已产生明显的形态分化,胡润种群多数表型性状值在3个种群中最小,安宁种群的果实和种子偏圆,弄岗种群偏窄;在种群内部,果实和种子重量的分化较显著,整体形态较稳定;在萌发过程中,种子留存,不定根逐渐取代胚根成为主根;3个种群的萌发过程均缓慢,中间阶段几乎停滞,出苗极不整齐,萌发率表现为安宁种群(78.33%)弄岗种群(55%)胡润种群(48.33%),种子存在休眠;从种子萌发来看,以80 mg·L~(-1)的6-BA浸种24 h处理效果最好,萌发时滞最短、萌发率最高、平均萌发时间最短;结合幼苗生长情况来看,10~50 mg·L~(-1)的6-BA和500 mg·L~(-1)的GA_3处理均适宜,以50 mg·L~(-1)的6-BA效果最佳。低浓度的KNO_3和NH_4NO_3能提高萌发率,但未显著加快萌发进程,IAA和NAA对种子萌发和幼苗生长有抑制作用。该研究结果为金丝李的遗传多样性提供了形态学资料,为更好地保护、开发和利用这一珍贵树种提供了科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号