首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim Large‐bodied vertebrates often have a dramatic role in ecosystem function through herbivory, trampling, seed dispersal and nutrient cycling. The iconic Galápagos tortoises (Chelonoidis nigra) are the largest extant terrestrial ectotherms, yet their ecology is poorly known. Large body size should confer a generalist diet, benign digestive processes and long‐distance ranging ability, rendering giant tortoises adept seed dispersers. We sought to determine the extent of seed dispersal by Galápagos tortoises and their impact on seed germination for selected species, and to assess potential impacts of tortoise dispersal on the vegetation dynamics of the Galápagos. Location Galápagos, Ecuador. Methods To determine the number of seeds dispersed we identified and counted intact seeds from 120 fresh dung piles in both agricultural and national park land. To estimate the distance over which tortoises move seeds we used estimated digesta retention times from captive tortoises as a proxy for retention times of wild tortoises and tortoise movement data obtained from GPS telemetry. We conducted germination trials for five plant species to determine whether tortoise processing influenced germination success. Results In our dung sample, we found intact seeds from > 45 plant species, of which 11 were from introduced species. Tortoises defecated, on average, 464 (SE 95) seeds and 2.8 (SE 0.2) species per dung pile. Seed numbers were dominated by introduced species, particularly in agricultural land. Tortoises frequently moved seeds over long distances; during mean digesta retention times (12 days) tortoises moved an average of 394 m (SE 34) and a maximum of 4355 m over the longest recorded retention time (28 days). We did not find evidence that tortoise ingestion or the presence of dung influenced seed germination success. Main conclusions Galápagos tortoises are prodigious seed dispersers, regularly moving large quantities of seeds over long distances. This may confer important advantages to tortoise‐dispersed species, including transport of seeds away from the parent plants into sites favourable for germination. More extensive research is needed to quantify germination success, recruitment to adulthood and demography of plants under natural conditions, with and without tortoise dispersal, to determine the seed dispersal effectiveness of Galápagos tortoises.  相似文献   

2.
As once boldly stated, 'bad taxonomy can kill', highlighting the critical importance of accurate taxonomy for the conservation of endangered taxa. The concept continues to evolve almost 15 years later largely because most legal protections aimed at preserving biological diversity are based on formal taxonomic designations. In this paper we report unrecognized genetic divisions within the giant tortoises of the Galápagos. We found three distinct lineages among populations formerly considered a single taxon on the most populous and accessible island of Santa Cruz; their diagnosability, degree of genetic divergence and phylogenetic placement merit the recognition of at least one new taxon. These results demonstrate the fundamental importance of continuing taxonomic investigations to recognize biological diversity and designate units of conservation, even within long-studied organisms such as Galápagos tortoises, whose evolutionary heritage and contribution to human intellectual history warrant them special attention.  相似文献   

3.
Galápagos tortoises represent the only surviving lineage of giant tortoises that exhibit two different types of shell morphology. The taxonomy of Galápagos tortoises was initially based mainly on diagnostic morphological characters of the shell, but has been clarified by molecular studies indicating that most islands harbor monophyletic lineages, with the exception of Isabela and Santa Cruz. On Santa Cruz there is strong genetic differentiation between the two tortoise populations (Cerro Fatal and La Reserva) exhibiting domed shell morphology. Here we integrate nuclear microsatellite and mitochondrial data with statistical analyses of shell shape morphology to evaluate whether the genetic distinction and variability of the two domed tortoise populations is paralleled by differences in shell shape. Based on our results, morphometric analyses support the genetic distinction of the two populations and also reveal that the level of genetic variation is associated with morphological shell shape variation in both populations. The Cerro Fatal population possesses lower levels of morphological and genetic variation compared to the La Reserva population. Because the turtle shell is a complex heritable trait, our results suggest that, for the Cerro Fatal population, non-neutral loci have probably experienced a parallel decrease in variability as that observed for the genetic data.  相似文献   

4.
Giant tortoises were once a megafaunal element widespread in tropical and subtropical ecosystems. The role of giant tortoises as herbivores and seed dispersers, however, is poorly known. We evaluated tortoise impacts on Opuntia cactus (Cactaceae) in the Galápagos Islands, one of the last areas where giant tortoises remain extant, where the cactus is a keystone resource for many animals. We contrasted cactus populations immediately inside and outside natural habitats where tortoises had been held captive for several decades. Through browsing primarily and trampling secondarily tortoises strongly reduced densities of small (0.5–1.5 m high) cacti, especially near adult cacti, and thereby reduced densities of cacti in larger size classes. Tortoises also caused a shift from vegetative to sexual modes of reproduction in cacti. We conclude that giant tortoises promote a sparse and scattered distribution in Opuntia cactus and its associated biota in the Galápagos Islands.  相似文献   

5.
Genetic tools have become a critical complement to traditional approaches for meeting short‐ and long‐term goals of ex situ conservation programs. The San Diego Zoo (SDZ) harbors a collection of wild‐born and captive‐born Galápagos giant tortoises (n = 22) of uncertain species designation and unknown genealogical relationships. Here, we used mitochondrial DNA haplotypic data and nuclear microsatellite genotypic data to identify the evolutionary lineage of wild‐born and captive‐born tortoises of unknown ancestry, to infer levels of relatedness among founders and captive‐born tortoises, and assess putative pedigree relationships assigned by the SDZ studbook. Assignment tests revealed that 12 wild‐born and five captive‐born tortoises represent five different species from Isabela Island and one species from Santa Cruz Island, only five of which were consistent with current studbook designations. Three wild‐born and one captive‐born tortoise were of mixed ancestry. In addition, kinship analyses revealed two significant first‐order relationship pairs between wild‐born and captive‐born tortoises, four second‐order relationships (half‐sibling) between wild‐born and captive tortoises (full‐sibs or parent‐offspring), and one second‐order relationship between two captive‐born tortoises. Of particular note, we also reconstructed a first‐order relationship between two wild‐born individuals, violating the founder assumption. Overall, our results contribute to a worldwide effort in identifying genetically important Galápagos tortoises currently in captivity while revealing closely related founders, reconstructing genealogical relationships, and providing detailed management recommendations for the SDZ tortoises. Zoo Biol 31:107;–120, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

6.
Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward‐in‐time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion.  相似文献   

7.

Background

The Galápagos archipelago is known worldwide for its contributions to Charles Darwin’s theory of evolution by natural selection, and the islands continue to support studies in evolutionary biology. Yet despite the strong association of Galápagos with evolutionary biology, it is unknown if tourists—approaching 200,000 individuals annually—come to Galápagos with a specific interest in learning about evolution. Prior work has established that Galápagos National Park guides are proud of the association between the islands and evolution, yet on average do not do well on a test of basic evolutionary concepts. The work described herein is an attempt to clarify, via in-person surveys on tourists during the summer of 2016, whether tourists are motivated to visit Galápagos by an interest in evolution.

Results

Of the 109 tourists who answered the question “How interested were you in this trip to Galápagos?” all but one indicated that they were interested or extremely interested in their trip. Only two mentioned a specific interest in learning about evolution or the relationship between the islands and the history of evolutionary thought. For most people, seeing animals—in general or specifically identified animals such as the giant tortoises—was the primary motivation for coming to Galápagos. Unusual animals, snorkeling, and visiting a remote location all averaged above 4.0 on a 5.0-point scale, indicating that these aspects of the archipelago are very-to-extremely appealing to tourists. When average responses for 22 items were ranked from most to least appealing, evolution-related items came in 14th, 17th, 18th, and 20th. However, consequences of evolutionary processes, such as unusual animals and biodiversity, rank higher than either of the four evolution-specific items.

Conclusions

Given tourists’ primary interest in the islands’ endemic wildlife, we find little reason for concern over the guides’ lack of specific evolution-related content knowledge. More critical to both guides and tourists are the impacts of population growth and increased tourism to the islands. Stakeholders can best serve the interests of the growing tourist population and the vigor of the Galápagos economy via conservation efforts—by developing and supporting programs that mediate the concerns raised by ecologists, protecting the islands’ fragile habitat, and regulating commercial land use. In addition, a better understanding of tourists’ motivations may provide opportunities to explore connecting evolutionary concepts to visitor interests.
  相似文献   

8.
Four of the five tortoise species in Madagascar, Pyxis arachnoides, P. planicauda, Geochelone radiata, and G. yniphora, are endemic and on the verge of extinction. Their phylogenetic relationships remain controversial and unresolved. Here we address the phylogeny of this group using DNA sequences for the 12S and 16S rDNA and cyt b genes in mitochondrial DNA. As outgroups we used two species of Geochelone, pardalis (mainland Africa) and nigra (Galápagos), as well as a more distant North American tortoise, Gopherus polyphemus. We conclude that the two Pyxis species are sister taxa and are imbedded in the genus Geochelone, rendering this latter genus paraphyletic. There is moderate support for the sister status of the two Madagascar Geochelone and for the monophyletic origin of all four endemics, suggesting a single colonization of the island. The separation of Madagascar from other land masses (90-165 mya) predates the origin of the endemic tortoises (estimated to be 14-22 mya). This suggests founding by rafting, a process known to have occurred with other tortoises. The derived morphological divergence of the Pyxis species in a relatively short period of time (13-20 my) stands in contrast to the notoriously slow rate of morphological evolution in most lineages of Chelonia.  相似文献   

9.
The reproductive physiology of nine Galápagos tortoises (Geochelone nigra) was studied from February 1988 to May 1989. The study encompassed the annual reproductive cycle to include complete mating and nesting sequences. Male (n = 4) and female (n = 5) seasonal reproductive changes were determined throughout the study with endocrine analysis and ultrasonographic examinations. Males displayed a prenuptial rise in serum testosterone (x― ±SE = 6.62 ± 0.92 ng/ml in August) during which gonadal maturation and spermatogenesis are thought to occur. The male reproductive cycle appears consistent with the prenuptial spermatogenic pattern exhibited by other tropical turtles. In the females, testosterone rose during the mating period (x― ± SE = 499.3 ± 124.6 pg/ml in October) prior to ovulation and is probably related to receptivity in the females. Progesterone was more variable, but also peaked during the mating period (x― ± SE = 1,017.2 ± 220.6 pg/ml in October) and appears related to ovulation. Estradiol rose several months prior to mating (x― ± SE = 75.5 ± 11.9 pg/ml in July) and was correlated with increased serum calcium levels. This increase in estradiol is thought to stimulate vitellogenesis several months prior to mating. Nesting occurred from November 1988 to April 1989, during which six clutches were laid. Clutch size ranged from eight to 17 eggs. Both male and female Galápagos tortoises display seasonal physiological changes that function to regulate annual reproductive patterns. Zoo Biol 17:505–517, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

10.
Human activity has facilitated the introduction of a number of alien mammal species to the Galápagos Archipelago. Understanding the phylogeographic history and population genetics of invasive species on the Archipelago is an important step in predicting future spread and designing effective management strategies. In this study, we describe the invasion pathway of Rattus rattus across the Galápagos using microsatellite data, coupled with historical knowledge. Microsatellite genotypes were generated for 581 R. rattus sampled from 15 islands in the archipelago. The genetic data suggest that there are at least three genetic lineages of R. rattus present on the Galápagos Islands. The spatial distributions of these lineages correspond to the main centers of human settlement in the archipelago. There was limited admixture among these three lineages, and these finding coupled with low rates of gene flow among island populations suggests that interisland movement of R. rattus is rare. The low migration among islands recorded for the species will have a positive impact on future eradication efforts.  相似文献   

11.
Culex quinquefasciatus Say (Diptera: Culicidae), an important vector of West Nile virus (WNV) in the U.S.A., was first detected on the Galápagos Islands (Ecuador) in the 1980s. However, little is known of its ecology, distribution or capacity for arbovirus transmission in the Galápagos. We characterize details of lifecycle (including gonotrophic period), temporal abundance, spatial distribution, vector competence and host‐feeding behaviour. Culex quinquefasciatus was detected on five islands of the Galápagos during 2006–2011. A period of 7–14 days was required for egg–adult emergence; water salinity above 5 ppt was demonstrated to hinder larval development. Blood‐meal analysis indicated feeding on reptiles, birds and mammals. Assessment of WNV vector competency of Galápagos C. quinquefasciatus showed a median infectious dose of 7.41 log10 plaque‐forming units per millilitre and evidence of vertical transmission (minimal filial infection rate of 3.7 per 1000 progeny). The distribution of C. quinquefasciatus across the archipelago could be limited by salt intolerance, and its abundance constrained by high temperatures. Feeding behaviour indicates potential to act as a bridge vector for transmission of pathogens across multiple taxa. Vertical transmission is a potential persistence mechanism for WNV on Galápagos. Together, our results can be used for epidemiological assessments of WNV and target vector control, should this pathogen reach the Galápagos Islands.  相似文献   

12.
Volcanic islands represent excellent models with which to study the effect of vicariance on colonization and dispersal, particularly when the evolution of genetic diversity mirrors the sequence of geological events that led to island formation. Phylogeographic inference, however, can be particularly challenging for recent dispersal events within islands, where the antagonistic effects of land bridge formation and vicariance can affect movements of organisms with limited dispersal ability. We investigated levels of genetic divergence and recovered signatures of dispersal events for 631 Galápagos giant tortoises across the volcanoes of Sierra Negra and Cerro Azul on the island of Isabela. These volcanoes are among the most recent formations in the Galápagos (<0.7 million years), and previous studies based on genetic and morphological data could not recover a consistent pattern of lineage sorting. We integrated nested clade analysis of mitochondrial DNA control region sequences, to infer historical patterns of colonization, and a novel Bayesian multilocus genotyping method for recovering evidence of recent migration across volcanoes using eleven microsatellite loci. These genetic studies illuminate taxonomic distinctions as well as provide guidance to possible repatriation programs aimed at countering the rapid population declines of these spectacular animals.  相似文献   

13.
Galápagos hawks (Buteo galapagoensis) are one of the most inbred bird species in the world, living in small, isolated island populations. We used mitochondrial sequence and nuclear minisatellite data to describe relationships among Galápagos hawk populations and their colonization history. We sampled 10 populations (encompassing the entire current species range of nine islands and one extirpated population), as well as the Galápagos hawk's closest mainland relative, the Swainson's hawk (B. swainsoni). There was little sequence divergence between Galápagos and Swainson's hawks (only 0.42% over almost 3kb of data), indicating that the hawks colonized Galápagos very recently, likely less than 300,000 years ago, making them the most recent arrivals of the studied taxa. There were only seven, closely related Galápagos hawk haplotypes, with most populations being monomorphic. The mitochondrial and minisatellite data together indicated a general pattern of rapid population expansion followed by genetic isolation of hawk breeding populations. The recent arrival, genetic isolation, and phenotypic differentiation among populations suggest that the Galápagos hawk, a rather new species itself, is in the earliest stages of further divergence.  相似文献   

14.
During his historic Galápagos visit in 1835, Darwin spent nine days making scientific observations and collecting specimens on Santiago (James Island). In the course of this visit, Darwin ascended twice to the Santiago highlands. There, near springs located close to the island’s summit, he conducted his most detailed observations of Galápagos tortoises. The precise location of these springs, which has not previously been established, is here identified using Darwin’s own writings, satellite maps, and GPS technology. Photographic evidence from excursions to the areas where Darwin climbed, including repeat photography over a period of four decades, offers striking evidence of the deleterious impact of feral mammals introduced after Darwin’s visit. Exploring the impact that Darwin’s Santiago visit had on his thinking – especially focusing on his activities in the highlands – raises intriguing questions about the depth of his understanding of the evolutionary evidence he encountered while in the Galápagos. These questions and related insights provide further evidence concerning the timing of Darwin’s conversion to the theory of evolution, which, despite recent claims to the contrary, occurred only after his return to England.  相似文献   

15.

Background

Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms.

Results

Mitochondrial DNA sequences were obtained for four species of Galápagos mockingbirds and three sympatric species of ectoparasites - two louse and one mite species. These data were complemented with nuclear EF1α sequences in selected samples of parasites and with information from microsatellite loci in the mockingbirds. Mitochondrial sequence data revealed differences in population genetic diversity between all taxa and varying degrees of topological congruence between host and parasite lineages. A very low level of genetic variability and lack of congruence was found in one of the louse parasites, which was excluded from subsequent joint analysis of mitochondrial data. The reconciled multi-species tree obtained from the analysis is congruent with both the nuclear data and the geological history of the islands.

Conclusions

The gene genealogies of Galápagos mockingbirds and two of their ectoparasites show strong phylogeographic correlations, with instances of incongruence mostly explained by ancestral genetic polymorphism. A third parasite genealogy shows low levels of genetic diversity and little evidence of co-phylogeny with their hosts. These differences can mostly be explained by variation in life-history characteristics, primarily host specificity and dispersal capabilities. We show that pooling genetic data from organisms living in close ecological association reveals a more accurate phylogeographic history for these taxa. Our results have implications for the conservation and taxonomy of Galápagos mockingbirds and their parasites.  相似文献   

16.
Although Galápagos giant tortoises are an icon for both human-mediated biodiversity losses and conservation management successes, populations of two species on southern Isabela Island (Chelonoidis guntheri, and C. vicina) remain threatened by hunting and persistence of feral animals. Conservation management of these tortoises has been hampered by lack of clarity regarding their taxonomy, ecological and morphological diversity, and the spatial distribution of evolutionarily significant units that may exist. Analyses of 16 microsatellite loci did not group samples according to current taxonomy. Instead, three (rather than two) genetic clusters were revealed. We show that the three regions of southern Isabela associated with these genetic clusters are significantly different in their ecological niches, which could suggest that ecological divergence may have shaped patterns of genetic differentiation in these tortoises. Furthermore, results suggest limited recent gene flow among sampled localities and between each of the three regions associated with genetic clusters. We discuss the need for further research on the ecological factors shaping the genetic and morphological diversity of southern Isabela tortoises. We suggest that current strategies whereby populations are managed separately are warranted pending further study, but due to mixed ancestry we recommend that Cerro Paloma tortoises be excluded from management programs.  相似文献   

17.
The diatoms (Bacillariophyta) from a coastal lagoon from the Diablas wetlands (Isla Isabela, the Galápagos Islands) were studied in material from surface samples and a sediment core spanning the past 2,700 years in order to examine evidence of diatom evolution under geographic isolation. The total number of taxa found was ~100. Ultrastructural variation in valve morphology between members of Galápagos taxa was used to describe 10 species from the genus Navicula sensu stricto, which are new to science. Four taxa: N. isabelensis, N. isabelensoides, N. isabelensiformis, and N. isabelensiminor, shared several key characteristics that may be indicative of a common evolutionary heritage; these species therefore provide possible evidence for the in situ evolution of diatoms in the Galápagos coastal lagoons. Shared morphological characteristics include: (i) stria patterning in the central area, (ii) an elevated and thickened external raphe‐sternum, (iii) external central raphe endings that are slightly deflected toward the valve primary side, and (iv) an arched valve surface. To explain these findings, two models were proposed. The first suggested limited lateral diatomaceous transport of Navicula species between the Galápagos and continental South America. Alternatively, these new species may be ecological specialists arising from the unique environmental conditions of the Galápagos coastal lagoons, which restrict the colonization of common diatom taxa and enable the establishment of novel, rare species. The Diablas wetlands are an important site for diatom research, where local‐scale environmental changes have combined with global‐scale biogeographic processes resulting in unique diatom assemblages.  相似文献   

18.
This supplement to a bibliography published in 1973 lists 112 new references on Galápagos botany. The availability of accurate information in a new flora of the Galápagos Islands has brought about an increase in botanical research. Very little new work has been done on cryptogams. Many recent studies concentrate on ecology and conservation of the unique Galápagos plants.  相似文献   

19.
This study puts together genetic data and an approximate bayesian computation (ABC) approach to infer the time at which the tree Geoffroea spinosa colonized the Galápagos Islands. The genetic diversity and differentiation between Peru and Galápagos population samples, estimated using three chloroplast spacers and six microsatellite loci, reveal significant differences between two mainland regions separated by the Andes mountains (Inter Andean vs. Pacific Coast) as well as a significant genetic differentiation of island populations. Microsatellites identify two distinct geographical clusters, the Galápagos and the mainland, and chloroplast markers show a private haplotype in the Galápagos. The nuclear distinctiveness of the Inter Andean populations suggests current restricted pollen flow, but chloroplast points to cross‐Andean dispersals via seeds, indicating that the Andes might not be an effective biogeographical barrier. The ABC analyses clearly point to the colonization of the Galápagos within the last 160 000 years and possibly as recently as 4750 years ago (475 generations). Founder events associated with colonization of the two islands where the species occurs are detected, with Española having been colonized after Floreana. We discuss two nonmutually exclusive possibilities for the colonization of the Galápagos, recent natural dispersal vs. human introduction.  相似文献   

20.
In the traditional biogeographic model, the Galápagos Islands appeared a few million years ago in a sea where no other islands existed and were colonized from areas outside the region. However, recent work has shown that the Galápagos hotspot is 139 million years old (Early Cretaceous), and so groups are likely to have survived at the hotspot by dispersal of populations onto new islands from older ones. This process of metapopulation dynamics means that species can persist indefinitely in an oceanic region, as long as new islands are being produced. Metapopulations can also undergo vicariance into two metapopulations, for example at active island arcs that are rifted by transform faults. We reviewed the geographic relationships of Galápagos groups and found 10 biogeographic patterns that are shared by at least two groups. Each of the patterns coincides spatially with a major tectonic structure; these structures include: the East Pacific Rise; west Pacific and American subduction zones; large igneous plateaus in the Pacific; Alisitos terrane (Baja California), Guerrero terrane (western Mexico); rifting of North and South America; formation of the Caribbean Plateau by the Galápagos hotspot, and its eastward movement; accretion of Galápagos hotspot tracks; Andean uplift; and displacement on the Romeral fault system. All these geological features were active in the Cretaceous, suggesting that geological change at that time caused vicariance in widespread ancestors. The present distributions are explicable if ancestors survived as metapopulations occupying both the Galápagos hotspot and other regions before differentiating, more or less in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号