首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gross morphology of the gas bladder is described and illustrated for representatives of most species and all valid genera of the Auchenipteridae (Siluriformes). Although, a simple cordiform gas bladder is present in some species of the family, others are characterized by their distinctive gas‐bladder shape and diverticula disposition. An acute posterior end of the gas bladder characterizes Centromochlus heckelii and C. macracanthus, and is variably present in specimens of Auchenipterus. Tocantinsia piresi and Asterophysus batrachus have distinctive gas bladders differing in number of diverticula (two or many). The two species of Trachycorystes are diagnosed based on their gas bladder morphology: T. menezesi has a simple cordiform bladder, whereas T. trachycorystes has a pair of lateral diverticulum and, usually, a well‐developed terminal diverticulum. Species of Auchenipterichthys are characterized by having a secondary bladder with simple chamber. Short or elongate and divergent terminal diverticula are exclusive to most cis‐andine species of Trachelyopterus. Tetranematichthys and trans‐andine species of Trachelyopterus share a well‐developed secondary chamber or terminal diverticula ventrally or dorsally connected to the posterior chambers. The small‐sized species of Ageneiosus have well‐developed gas bladders with a pair of posterior diverticula, whereas large‐sized species have a reduced gas bladder with tunica externa varying from non‐, partially, or completely ossified. Eight phylogenetic characters are proposed based on the morphology of the gas bladder and associated structures in species of Auchenipteridae, and the evolution of those characters in the family discussed. J. Morphol., 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

2.
The anatomy of the gas bladder of Diodontidae (porcupinefishes) and Tetraodontidae (pufferfishes) was studied on the basis of dissections and magnetic resonance imaging. Among the examined taxa of Tetraodontiformes, only puffers and porcupinefishes possess a thick walled and dorsally U‐shaped or crescent‐moon‐shaped gas bladder. In the tetraodontid genus Lagocephalus the gas bladder is reduced to a rudiment. The species belonging to the genera Canthigaster, Arothron, and some species of Tetraodon differ in the positioning of their crescent‐moon‐shaped gas bladder. These observations confirm the close relationship of: (i) Diodontidae and Tetraodontidae and (ii) Canthigaster, Arothron, and some species of Tetraodon. The heterogeneity of the genus Tetraodon is supported by the gas bladder morphology, as previously suggested by molecular studies. J. Morphol. 275:894–901, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
《Journal of morphology》2017,278(4):450-463
Polypterus senegalus Cuvier, 1829 is one of the most basal living actinopterygian fish and a member of the Actinopterygii. We analyzed the spatial and temporal pattern of cranial muscle development of P. senegalus using whole‐mount immunostaining and serial sectioning. We described the detailed structure of the external gill muscles which divided into dorsal and ventral parts after yolk exhaustion. The pattern of the division is similar to that of urodeles. We suggest that, the external gill muscles of P. senegalus are involved in spreading and folding of the external gill stem and the branches. The fibers of the external gill muscles appear postero‐lateral to the auditory capsule. In addition, the facial nerve passes through the external gills. Therefore, the external gill muscles are probably derived from the m. constrictor hyoideus dorsalis. In contrast to previous studies, we described the mm. interhyoideus and hyohyoideus fibers as independent components in the yolk‐sac larvae. The m. hyohyoideus fibers appear lateral to the edge of the ventral portion of the external gill muscles, which are probably derived from the m. constrictor hyoideus dorsalis. These findings suggest that the m. hyohyoidues is derived from the m. constrictor hyoideus dorsalis in P. senegalus . In other actinopterygians, the m. hyohyoideus is derived from the m. constrictor hyoideus ventralis; therefore, the homology of the m. hyohyoidues of P. senegalus and other actinopterygians remains unclear. J. Morphol. 278:450–463, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

4.
A phylogeny was generated for Leiognathidae, an assemblage of bioluminescent, Indo‐Pacific schooling fishes, using 6175 characters derived from seven mitochondrial genes (16S, COI, ND4, ND5, tRNA‐His, tRNA‐Ser, tRNA‐Leu), two nuclear genes (28S, histone H3), and 15 morphological transformations corresponding to features of the fishes' sexually dimorphic light‐organ system (LOS; e.g., circumesophageal light organ, lateral lining of the gas bladder, transparent flank and opercular patches). Leiognathidae comprises three genera, Gazza, Leiognathus, and Secutor. Our results demonstrate that Leiognathidae, Gazza, and Secutor are monophyletic, whereas Leiognathus is not. The recovered pattern of relationships reveals that a structurally complex, strongly sexually dimorphic and highly variable species‐specific light organ is derived from a comparatively simple non‐dimorphic structure, and that evolution of other sexually dimorphic internal and external features of the male LOS are closely linked with these light‐organ modifications. Our results demonstrate the utility of LOS features, both for recovering phylogeny and resolving taxonomic issues in a clade whose members otherwise exhibit little morphological variation. We diagnose two new leiognathid genera, Photopectoralis and Photoplagios, on the basis of these apomorphic LOS features and also present derived features of the LOS to diagnose several additional leiognathid clades, including Gazza and Secutor. Furthermore, we show that five distinct and highly specialized morphologies for male‐specific lateral luminescence signaling, which exhibit species‐specific variation in structure, have evolved in these otherwise outwardly conservative fishes. Leiognathids inhabit turbid coastal waters with poor visibility and are often captured in mixed assemblages of several species. We hypothesize that the species‐specific, sexually dimorphic internal and external modifications of the leiognathid LOS provide compelling evidence for an assortative mating scheme in which males use species‐specific patterns of lateral luminescence signaling to attract mates, and that this system functions to maintain reproductive isolation in these turbid coastal environments. © The Willi Hennig Society 2005.  相似文献   

5.
The order Hexanchiformes currently comprises two families, Chlamydoselachidae (frilled sharks) and Hexanchidae (six‐ and seven‐gill sharks), but its monophyly and relationships with other elasmobranchs are still discussed. Previous studies of hexanchiforms addressing these issues were based mainly on external morphology, teeth, skeletal features, and molecular data, whereas the employment of characters derived from variations in muscles has not been significantly explored. Dissections of four species of Hexanchiformes (including Chlamydoselachus anguineus) are reported here describing the mandibular (musculus adductor mandibulae dorsalis, m. adductor mandibulae ventralis, m. levator labii superioris, m. intermandibularis, and m. constrictor dorsalis) and hyoidean (m. constrictor hyoideus dorsalis and ventralis) arch muscles. Our results provide new data concerning the relationships of hexanchiforms to other elasmobranchs. The m. adductor mandibulae superficialis is described and illustrated in C. anguineus, contradicting previous accounts in which is was considered absent. The anteroposterior orientation of the m. adductor mandibulae superficialis in Chlamydoselachus is similar to the pattern found in hexanchids, squaloids, and hypnosqualeans (including batoids), suggesting it was secondarily lost in Echinorhinus. This muscle therefore provides further support for the inclusion of the Chlamydoselachidae and Hexanchidae in the Squalomorphi, and not basal to all other elasmobranchs or nested within an all‐shark collective, as has been previously proposed. However, the m. adductor mandibulae superficialis originating at the jaw joint and with an aponeurotic insertion in hexanchids, squaliforms, and hypnosqualeans, may be a separate derived feature uniting these taxa. The insertion of the m. constrictor dorsalis is restricted to the postorbital articulation in hexanchids, whereas it extends farther anteriorly in C. anguineus. The insertion of the m. constrictor hyoideus dorsalis solely on the palatoquadrate is found exclusively in the Hexanchidae. We conclude that no specific pattern of mandibular or hyoid arch muscles support the monophyly of hexanchiforms (i.e., including Chlamydoselachus). J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
7.
Environmental sequences have become a major source of information. High‐throughput sequencing (HTS) surveys have been used to infer biogeographic patterns and distribution of broad taxa of protists. This approach is, however, more questionable for addressing low‐rank (less inclusive) taxa such as species and genera, because of the increased chance of errors in identification due to blurry taxonomic boundaries, low sequence divergence, or sequencing errors. The specious ciliate genus Euplotes partially escapes these limitations. It is a ubiquitous, monophyletic taxon, clearly differentiated from related genera, and with a relatively well‐developed internal systematics. It has also been the focus of several ecological studies. We present an update on Euplotes biogeography, taking into consideration for the first time environmental sequences, both traditional (Sanger) and HTS. We inferred a comprehensive small subunit rRNA gene phylogeny of the genus including a newly described marine species, Euplotes enigma, characterized by a unique question mark‐shaped macronucleus. We then added available environmental sequences to the tree, mapping associated metadata. The resulting scenario conflicts on many accounts with previously held views, suggesting, for example, that a large diversity of anaerobic Euplotes species exist, and that marine representatives of mainly freshwater lineages (and vice‐versa) might be more common than previously thought.  相似文献   

8.
Described and illustrated is Warneckea cordiformis R. D. Stone, an evidently localized endemic of coastal dry forest in Mozambique's Cabo Delgado Province. In ‘Flora Zambesiaca’ the new species would key to W. sansibarica (Taub.) Jacq.‐Fél., from which it is readily distinguished by the much smaller, ovate to cordiform leaves and white, short‐pedicellate flowers. Because of its evidently very limited occurrence as well as on‐going anthropogenic threats, Warneckea cordiformis is here assessed as ‘Critically Endangered’ (CR) B1a,b(iii) according to IUCN criteria. A key is provided to the Mozambican species of Warneckea.  相似文献   

9.
We comparatively examined the trunk musculature and prezygapophyseal angle of mid‐trunk vertebra in eight urodele species with different locomotive modes (aquatic Siren intermedia, Amphiuma tridactylum, Necturus maculosus and Andrias japonicus; semi‐aquatic Cynops pyrrhogaster, Cynops ensicauda; and terrestrial Hynobius nigrescens, Hynobius lichenatus and Ambystoma tigrinum). We found that the more terrestrial species were characterized by larger dorsal and abdominal muscle weight ratios compared with those of the more aquatic species, whereas muscle ratios of the lateral hypaxial musculature were larger in the more aquatic species. The lateral hypaxial muscles were thicker in the more aquatic species, whereas the M. rectus abdominis was more differentiated in the more terrestrial species. Our results suggest that larger lateral hypaxial muscles function for lateral bending during underwater locomotion in aquatic species. Larger dorsalis and abdominal muscles facilitate resistance against sagittal extension of the trunk, stabilization and support of the ventral contour line against gravity in terrestrial species. The more aquatic species possessed a more horizontal prezygapophyseal angle for more flexible lateral locomotion. In contrast, the more terrestrial species have an increasingly vertical prezygapophyseal angle to provide stronger column support against gravity. Thus, we conclude trunk structure in urodeles differs clearly according to their locomotive modes.  相似文献   

10.
A complete study of the early ontogeny of the cranial muscles of Corydoras aeneus (Callichthyidae) was undertaken and results were compared with those for the loricariid Ancistrus cf. triradiatus. This comparison reveals a high degree of similarity in the ontogeny of both species' cranial muscles. Both species lack a musculus protractor hyoidei, and the musculus intermandibularis posterior is divided into two different parts that have partly obtained a novel function (serving the lower lip) in A. cf. triradiatus. A similar increase in muscular complexity in this species is found in the dorsal constrictor of the hyoid muscle plate. This constrictor gives rise to the same muscles in both C. aeneus and A. cf. triradiatus, but in A. cf. triradiatus the musculus levator operculi later hypertrophies. In C. aeneus the musculus extensor tentaculi forms a single muscle diverging posteriorly, whereas in A. cf. triradiatus the musculus extensor tentaculi differentiates into two separate bundles. Also, a loricariid neoformation is present called the musculus levator tentaculi.  相似文献   

11.
The Hippolytidae is the fourth largest family within the Caridea, currently containing over 330 described species in 37 genera, and the classification of this family has been rather controversial. In this study, sequences of two nuclear protein‐coding genes, enolase and sodium‐potassium ATPase α‐subunit, and the mitochondrial 16S rRNA gene (totalling 1405 bp) from 29 hippolytid species in 20 genera plus 17 species from eight other caridean families were used to examine the phylogenetic status of Hippolytidae sensu lato. Our results clearly reject the monophyly of Hippolytidae and support the recognition of the Lysmatidae Dana, 1852, Thoridae Kingsley, 1879, Bythocarididae Christoffersen 1987 and Merguiidae Christoffersen 1990 .  相似文献   

12.
Despite the acknowledged importance of the locomotory and respiratory functions associated with hypaxial musculature in salamanders, variation in gross morphology of this musculature has not been documented or evaluated within a phylogenetic or ecological context. In this study, we characterize and quantify the morphological variation of lateral hypaxial muscles using phylogenetically and ecologically diverse salamander species from eight families: Ambystomatidae (Ambystoma tigrinum), Amphiumidae (Amphiuma tridactylum), Cryptobranchidae (Cryptobranchus alleganiensis), Dicamptodontidae (Dicamptodon sp.), Plethodontidae (Gyrinophilus porphyriticus), Proteidae (Necturus maculosus), Salamandridae (Pachytriton sp.), and Sirenidae (Siren lacertina). For the lateral hypaxial musculature, we document 1) the presence or absence of muscle layers, 2) the muscle fiber angles of layers at mid‐trunk, and 3) the relative dorsoventral positions and cross‐sectional areas of muscle layers. Combinations of two, three, or four layers are observed. However, all species retain at least two layers with opposing fiber angles. The number of layers and the presence or absence of layers vary within species (Necturus maculosus and Siren lacertina), within genera (e.g., Triturus), and within families. No phylogenetic pattern in the number of layers can be detected with a family‐level phylogeny. Fiber angle variation of hypaxial muscles is considerable: fiber angles of the M. obliquus externus range from 20–80°; M. obliquus internus, 14–34°; M. transversus abdominis, 58–80° (acute angles measured relative to the horizontal septum). Hypaxial musculature comprises 17–37% of total trunk cross‐sectional area. Aquatic salamanders show relatively larger total cross‐sectional hypaxial area than salamanders that are primarily terrestrial. J. Morphol. 241:153–164, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

13.
Gas bladders of ray‐finned fishes serve a variety of vital functions and are thus an important novelty of most living vertebrates. The gas bladder has long been regarded as an evolutionary modification of lungs. Critical evidence for this hypothesized homology is whether pulmonary arteries supply the gas bladder as well as the lungs. Pulmonary arteries, paired branches of the fourth efferent branchial arteries, deliver blood to the lungs in osteichthyans with functional lungs (lungfishes, tetrapods, and the ray‐finned polypterid fishes). The fact that pulmonary arteries also supply the respiratory gas bladder of Amia calva (bowfin) has been used to support the homology of lungs and gas bladders, collectively termed air‐filled organs (AO). However, the homology of pulmonary arteries in bowfin and lunged osteichthyans has been uncertain, given the apparent lack of pulmonary arteries in critical taxa. To re‐evaluate the homology of pulmonary arteries in bowfin and lunged osteichthyans, we studied, using micro‐CT technology, the arterial vasculature of Protopterus, Polypterus, Acipenser, Polyodon, Amia, and Lepisosteus, and analyzed these data using a phylogenetic approach. Our data reveal that Acipenser and Polyodon have paired posterior branches of the fourth efferent branchial arteries, which are thus similar in origin to pulmonary arteries. We hypothesize that these arteries are vestigial pulmonary arteries that have been coopted for new functions due to the dorsal shift of the AO and/or the loss of respiration in these taxa. Ancestral state reconstructions support pulmonary arteries as a synapomorphy of the Osteichthyes, provide the first concrete evidence for the retention of pulmonary arteries in Amia, and support thehomology of lungs and gas bladders due to a shared vascular supply. Finally, we use ancestral state reconstructions to show that arterial AO supplies from the celiacomesenteric artery or dorsal aorta appear to be convergent between teleosts and nonteleost actinopterygians. J. Morphol., 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

14.
We have studied for the first time the taxonomic composition of filamentous fungi associated with the bivalve mollusks Crenomytilus grayanus (Bunker, 1853) and Modiolus modiolus (Linnaeus, 1758), collected in polluted biotopes of Ussuriiskii Bay (Peter the Great Bay, Sea of Japan). One hundred fifty-five strains of higher fungi were isolated, and 35 species of filamentous fungi were identified. Out of these, 28 species were anamorphous fungi of the genera Aspergillus (12), Penicillium (10), Acremonium (1), Alternaria (1), Aureobasidium (1), and Cladosporium (3) (Deuteromycota), and 7 were species of the genera Chaetomium (6) and Myxotrichum (1) (Ascomycota). Twenty-four species of filamentous fungi were isolated from the internal organs of C. grayanus: 8 from the muscles, 8 from the hepatopancreas, 6 from the female gonads, 4 from the mantle, 3 from the kidneys and male gonads, and 1 from the gills. Twenty-one species of filamentous fungi were isolated from the internal organs of Modiolus modiolus: 10 from the muscles, 6 from the hepatopancreas, 5 from the female gonads, 3 from the kidneys, 3 from the mantle, and 1 from the gills. The bulk of the isolated species of the genera Aspergillus, Penicillium, Cladosporium, and Chaetomium were pathogenic and toxigenic fungi.  相似文献   

15.
ABSTRACT

The Mekong River endemic Sinomytilus harmandi possesses an internal anterior shell septum. It is thus superficially similar to the marine representatives of the, as currently defined, Septiferinae (Mytilidae) although species of the latter possess an anterior adductor muscle located between their septa and are characterised by accessory posterior adductor muscles, both of which are absent in S. harmandi. This study demonstrates that S. harmandi is monophyletic with the only other, similarly native Asian, freshwater mytiloid, Limnoperna fortunei, based on the phylogenetic tree herein presented. Asian freshwaters thus seem to have been colonised by the Mytilidae relatively recently and on two occasions from a common ancestor also associated with representatives of the Lithophaginae, as currently defined. The common presence of an anterior septum in S. harmandi and species of the Septiferinae, as currently recognised, is thus the result of convergence as is the anatomical similarity between S. harmandi and representatives of the Central European Dreissenidae (Heterodonta), which also possess an anterior shell septum.  相似文献   

16.
In all stomiid genera there is an occipito‐vertebral gap between the skull and the first vertebra bridged only by the flexible notochord. Morphological studies from the early 20th century suggested that some stomiid genera have 1–10 of the anteriormost centra reduced or entire vertebrae missing in this region. Our study reviews this previous hypothesis. Using a new approach, we show that only in Chauliodus, Eustomias and Leptostomias gladiator vertebral centra are actually lost, with their respective neural arches and parapophyses persisting. We present results from a comparative analysis of the number and insertion sites of the anteriormost myosepta in 26 of the 28 stomiid genera. Generally in teleosts the first three myosepta are associated with the occiput, and the fourth is the first vertebral myoseptum. The insertion site of the fourth myoseptum plays an important role in this analysis, because it provides a landmark for the first vertebra. Lack of association of the fourth myoseptum with a vertebra is thus evidence that the first vertebra is reduced or absent. By counting the occipital and vertebral myosepta the number of reduced vertebrae in Chauliodus, Eustomias and Leptostomias gladiator can be inferred. Proper identification of the spino‐occipital nerves provides an additional source of information about vertebral reduction. In all other stomiid genera the extensive occipito‐ vertebral gap is not a consequence of the reduction of vertebrae, but of an elongation of the notochord. The complex structure and ontogeny of the anterior part of the vertebral column of stomiids are discussed comparatively. J. Morphol. 271:1006–1022, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Aim The pappus is one of the most distinctive features of the genera belonging to the sunflower family, and is an efficient mechanism for dispersion by wind. The pappose Holocheilus (seven species) and the non‐pappose Panphalea (nine species) are two genera of the monophyletic subtribe Nassauviinae (Asteraceae, Mutisieae), which overlap in their areas of distribution. This paper aims to reconstruct the biogeographical histories that shaped the distribution of these two genera, which are phylogenetically and geographically related, but differ in their means of dispersion. Our initial expectation was that the dispersion capability of the pappus should be reflected in more dispersal events in Holocheilus than in Panphalea. Location South‐eastern Brazil, Paraguay, Uruguay and Argentina. Methods Morphological data were acquired from the literature and by analysis of specimens. Two cladistic analyses, one for Holocheilus and one for Panphalea, were based on morphological characters, and data matrices were analysed with the Fitch parsimony algorithm of paup . The ancestral distributions were reconstructed using diva ver. 1.1 according to the dispersal–vicariance optimization method. Results The Paranense‐fields were identified as the most likely ancestral area of Holocheilus and Panphalea. Biogeographical reconstruction of Holocheilus shows several dispersal events from the Paranense‐fields: two ancestral dispersal events to the Yungas, followed by vicariance events (Paranense‐fields/Yungas) and numerous terminal dispersals to the surrounding areas such as Chacoan, Pampean and Espinal. diva reconstruction of Panphalea distribution also shows frequent terminal dispersals, with no vicariant events, from the Paranense‐fields to the other areas: (1) to Espinal, Pampean‐Uruguayan, Pampean‐oriental; (2) to Paranense‐hills; (3) to Pampean‐Uruguayan; and (4) to Paranense‐pine lands. Main conclusions In the past, both genera probably originated in the Paranense‐fields area, which was subject to the dry and humid cycles of the Quaternary glaciations. Dispersal was the process that predominantly shaped the distribution of Panphalea and Holocheilus, with approximately the same number of dispersal events in both genera, despite differing ranges of dispersion. The main barriers to dispersal were the dry Cerrado and Chaco, the latter promoting vicariance in Holocheilus. The lack of a pappus in Panphalea was a limitation for its dispersion compared with Holocheilus.  相似文献   

18.
Divergent morphologies among related species are often correlated with distinct behaviors and habitat uses. Considerable morphological and behavioral differences are found between two major clades within the polychaete family Opheliidae. For instance, Thoracophelia mucronata burrows by peristalsis, whereas Armandia brevis exhibits undulatory burrowing. We investigate the anatomical differences that allow for these distinct burrowing behaviors, then interpret these differences in an evolutionary context using broader phylogenetic (DNA‐based) and morphological analyses of Opheliidae and taxa, such as Scalibregmatidae and Polygordiidae. Histological three‐dimensional‐reconstruction of A. brevis reveals bilateral longitudinal muscle bands as the prominent musculature of the body. Circular muscles are absent; instead oblique muscles act with unilateral contraction of longitudinal muscles to bend the body during undulation. The angle of helical fibers in the cuticle is consistent with the fibers supporting turgidity of the body rather than resisting radial expansion from longitudinal muscle contraction. Circular muscles are present in the anterior of T. mucronata, and they branch away from the body wall to form oblique muscles. Helical fibers in the cuticle are more axially oriented than those in undulatory burrowers, facilitating radial expansion during peristalsis. A transition in musculature accompanies the change in external morphology from the thorax to the abdomen, which has oblique muscles similar to A. brevis. Muscles in the muscular septum, which extends posteriorly to form the injector organ, act in synchrony with the body wall musculature during peristalsis: they contract to push fluid anteriorly and expand the head region following a direct peristaltic wave of the body wall muscles. The septum of A. brevis is much thinner and is presumably used for eversion of a nonmuscular pharynx. Mapping of morphological characters onto the molecular‐based phylogeny shows close links between musculature and behavior, but less correlation with habitat. J. Morphol. 275:548–571, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
A new genus of Pfiesteria‐like heterotrophic dinoflagellate, Luciella gen. nov., and two new species, Luciella masanensis sp. nov. and Luciella atlantis sp. nov., are described. These species commonly occur with other small (<20 μm) heterotrophic and mixotrophic dinoflagellates in estuaries from Florida to Maryland and the southern coast of Korea, suggesting a possible global distribution. An SEM analysis indicates that members of the genus Luciella have the enhanced Kofoidian plate formula of Po, cp, X, 4′, 2a, 6″, 6c, PC, 5+s, 5?, 0p, and 2″″. The two four‐sided anterior intercalary plates are diamond shaped. The genus Luciella differs from the other genera in the Pfiesteriaceae by a least one plate in the plate tabulation and in the configuration of the two anterior intercalary plates. An SSU rDNA phylogenetic analysis confirmed the genus as monophyletic and distinct from the other genera in the Pfiesteriaceae. The morphology of Luciella masanensis closely resembles Pfiesteria piscicida Steid. et J. M. Burkh. and other Pfiesteria‐like dinoflagellates in size and shape, making it easily misidentified using LM. Luciella atlantis, in contrast, has a more distinctive morphology. It can be distinguished from L. masanensis and other Pfiesteria‐like organisms by a larger cell size, a more conical‐shaped epitheca and hypotheca, larger rhombic‐shaped intercalary plates, and an asymmetrical hypotheca. The genus Luciella is assigned to the order Peridiniales and the family Pfiesteriaceae based on plate tabulation, plate pattern, general morphology, and phylogenetic analysis.  相似文献   

20.
Ricinuleid functional mouthparts are the cucullus, the chelicerae, the pedipalps, and the labrum. These structures are movably jointed to the rest of the prosoma, most likely protruded upon hydrostatic hemolymph pressure and retracted by prosomal muscles. Seta‐like protrusions from the labrum and the pedipalpal coxae form a sieve‐like filter inside the preoral cavity and the mouth. Although the tip of the labrum can be elevated upon muscle constriction, ingestion of large, solid food particles is unlikely. The mouth has a crescent‐shaped cross section. The cuticle‐lined, also crescent‐shaped pharynx is equipped with a large dilator muscle but lacks antagonistic constrictor muscles. It represents a precerebral sucking pump. The triangular to Y‐shaped, cuticle‐lined esophagus is equipped with constrictor and dilator muscles. Its posterior part represents a postcerebral sucking pump. Four blind ending diverticula ramify from the anterior prosomal part of the entodermal midgut tube. Two of these diverticula remain inside the prosoma and form few short branches. The other two extend through the pedicel into the opisthosoma and ramify and coil there. A stercoral pocket protrudes ventrally out of the midgut tube. The most distal part of the midgut tube is modified into a contractile rectal gland. Its secretions may have defensive or physiological functions. A short anal atrium is formed by the cuticle‐lined ectodermal hindgut which opens at the end of the three‐segmented metasoma. The telescoping segments of the metasoma are protruded by hemolymph pressure and retracted by muscles. J. Morphol., 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号