首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
原子力显微镜(AFM)以其独特的优势(纳米级空间分辨率、皮牛级力灵敏度、免标记、可在溶液下工作)成为细胞生物学的重要研究手段.AFM不仅可以对活细胞表面超微形貌进行可视化表征,同时还可通过压痕技术对细胞机械特性(如杨氏模量)进行定量测量,为原位探索纳米尺度下单个活细胞动态生理活动及力学行为提供了可行性.过去的数十年中,研究人员利用AFM在细胞超微形貌成像和机械特性测量方面开展了广泛的应用研究,展示了有关细胞生理活动的大量新认识,为生命医药学领域相关问题的解决提供了新的思路;同时AFM自身的性能也在不断得到改进和提升,进一步促进了其在生命科学领域的应用.本文结合作者在应用AFM观测纳米尺度下癌症靶向药物作用效能方面的研究工作,介绍了AFM成像与细胞机械特性测量的原理,总结了近年来AFM用于细胞表面超微形貌成像与机械特性测量所取得的进展,讨论了AFM表征与检测细胞生理特性存在的问题,并对其未来发展方向进行了展望.  相似文献   

2.
细胞黏附在细胞生理功能中起着重要的调控作用,对细胞黏附行为进行定量研究有助于理解生命活动内在机制.原子力显微镜(AFM)的出现为研究溶液环境下微纳尺度生物系统的生物物理特性提供了强大工具,特别是AFM单细胞力谱(SCFS)技术可以对单细胞黏附力进行测量.但目前利用SCFS技术进行的研究主要集中在贴壁细胞,对于动物悬浮细胞黏附行为进行的研究还较为缺乏.本文利用AFM单细胞力谱技术(SCFS)对淋巴瘤细胞黏附行为进行了定量测量.研究了淋巴瘤细胞与其单克隆抗体药物利妥昔(利妥昔单抗与淋巴瘤细胞表面的CD20结合后激活免疫攻击)之间的黏附力,分析了利妥昔浓度及SCFS测量参数对黏附力的影响,并对淋巴瘤细胞之间的黏附力进行了测量.实验结果证明了SCFS技术探测动物悬浮细胞黏附行为的能力,加深了对淋巴瘤细胞黏附作用的认识,为单细胞尺度下生物力学探测提供了新的可能.  相似文献   

3.
原子力显微镜(AFM)的出现为免标记研究近生理环境下单个活体状态细胞的机械特性提供了新的技术手段.自20世纪90年代中期以来,研究人员在利用AFM测量细胞机械特性方面开展了大量研究,结果表明细胞机械特性是一个新的免标记生物标志物(可有效指示细胞生理状态的变化),加深了人们对癌症等重大疾病的认识,促进了细胞生物力学的发展.然而,现有的AFM单细胞机械特性研究主要集中在体外培养的细胞系,由于体内体外环境的巨大差异导致测量结果难以完全反映人体内的真实情况.特别是在精准医疗时代,需要对来自患者的原代细胞进行测试分析以实现疾病的个性化诊治.因此发展直接对临床患者原代细胞(癌变细胞和正常细胞)机械特性进行离体检测的方法具有潜在的转化医学实际意义.本文结合作者在基于AFM的淋巴瘤病例细胞机械特性测量与表征方面的研究工作,介绍了AFM测量细胞机械特性的原理与方法,总结了近年来AFM在检测原代细胞机械特性方面的进展,并对其面临的问题和挑战进行了讨论.  相似文献   

4.
原子力显微镜(AFM)的发明为测量生理环境下单个活细胞的机械特性提供了新的技术手段.现有AFM单细胞机械特性研究集中在测量细胞弹性.细胞本质上是黏弹性的,但目前关于细胞黏弹性在细胞生理活动行为中作用的认知还很不足.基于AFM逼近-停留-回退实验,发展了可同时对细胞弹性及黏弹性进行测量的方法,并应用该方法首先测量了正常乳腺细胞和乳腺癌细胞的弹性(杨氏模量)及黏弹性(松驰时间),显示出正常乳腺细胞和乳腺癌细胞的杨氏模量及松弛时间均有着显著的差异.AFM成像揭示了正常乳腺细胞和乳腺癌细胞在细胞表面形态及几何特征方面的差异.随后对3种不同类型的细胞系及原代B淋巴细胞进行了测量,证明了松驰时间在辅助杨氏模量鉴定细胞状态方面的潜力.实验结果为定量测量细胞机械特性提供了新的方法,便于从多个角度研究单个细胞的生物力学行为.  相似文献   

5.
原子力显微镜(AFM)由于具有纳米量级的空间分辨率和皮牛(pN)量级的力分辨率已经在活细胞和细胞组织超微结构的研究中取得重大进展,该技术为细胞生物力学的研究提供了新方法。通过力曲线可以得到与单个细胞的力学性质相关的信息。细胞弹性的变化是生物细胞发生病变的特征之一。利用AFM研究各种细胞的弹性特性,为疾病的早期诊断和治疗以及病理机制的研究提供了一种强有力的工具。本文主要综述了近些年用AFM技术研究疾病相关的细胞弹性特性的应用新进展,如发现多种类型的癌细胞都比健康细胞软,以及在相关血液性疾病(如冠状动脉疾病、高血压和糖尿病)中红细胞的弹性也发生了变化。这些特性可对疾病的辅助诊断提供参考,为病理学和临床医学研究提供了新依据。  相似文献   

6.
外泌体在细胞生理病理活动过程中起着重要的调控作用,研究外泌体的行为特性对于揭示生命活动及疾病发生发展的内在机理具有重要的基础意义.然而由于缺乏合适的观测手段及方法,目前对于活体状态下外泌体结构及特性的认知仍然很不足.原子力显微镜(AFM)的发明为研究溶液环境下天然状态生物样本提供了强大的技术工具,已成为生物学重要研究手段.本文利用AFM对单个活体状态外泌体的纳米结构及机械特性进行了研究.通过多聚赖氨酸静电吸附作用将从淋巴瘤患者骨髓中分离的外泌体吸附至基底,在溶液环境下实现了对单个活体状态外泌体的高质量AFM形貌成像并通过与空气中成像结果进行对比揭示了空气干燥处理对外泌体形貌的影响.在此基础上,分别利用AFM压痕试验和多参数成像技术实现了对单个活体状态外泌体机械特性的定量测量和可视化表征.最后基于所建立的方法技术揭示了化学处理后外泌体结构和机械特性的动态变化.研究结果为研究纳米尺度下活体状态外泌体的结构及特性,以更好理解天然状态外泌体的生理行为提供了新的方法和思路,对于外泌体研究具有潜在积极的意义.  相似文献   

7.
细胞黏附在细胞生理功能中起着重要的调控作用,对细胞黏附行为进行定量研究有助于理解生命活动内在机制.原子力显微镜(AFM)的出现为研究溶液环境下微纳尺度生物系统的生物物理特性提供了强大工具,特别是AFM单细胞力谱(SCFS)技术可以对单细胞黏附力进行测量.但目前利用SCFS技术进行的研究主要集中在贴壁细胞,对于动物悬浮细胞黏附行为进行的研究还较为缺乏.本文利用AFM单细胞力谱技术(SCFS)对淋巴瘤细胞黏附行为进行了定量测量.研究了淋巴瘤细胞与其单克隆抗体药物利妥昔(利妥昔单抗与淋巴瘤细胞表面的CD20结合后激活免疫攻击)之间的黏附力,分析了利妥昔浓度及SCFS测量参数对黏附力的影响,并对淋巴瘤细胞之间的黏附力进行了测量.实验结果证明了SCFS技术探测动物悬浮细胞黏附行为的能力,加深了对淋巴瘤细胞黏附作用的认识,为单细胞尺度下生物力学探测提供了新的可能.  相似文献   

8.
原子力显微镜(AFM)不仅能对纳米生物结构进行实时动态的形态和结构观察,而且还能以10^-12N(pN)的精度对溶液中生物分子表面的相互作用力进行直接测量,逐渐成为一种研究受体-配体间相互作用的良好工具。本简要综述用AFM研究受体-配体间作用力、受体-配体间相互作用的影响因素及对这些因素的处理方法。  相似文献   

9.
目的 细胞力学特性在生理病理变化过程中起着关键调控作用,开展细胞力学特性研究为揭示生命活动奥秘及疾病发生发展演变规律提供了新的视角。原子力显微镜(AFM)的出现为单细胞力学特性研究提供了强大的技术手段。AFM的独特优势是不需要对活细胞进行任何预处理即可在溶液环境下对天然状态的活细胞力学特性进行高精度(纳米级空间分辨率,皮牛级力感知灵敏度)探测。基于AFM压痕实验的细胞力学特性探测已成为生命科学领域的重要研究方法。然而,现有基于AFM的单细胞力学特性测量主要依赖于人工操作,特别是在测量过程中需要人工控制AFM探针移动到细胞表面特定位置进行压痕实验,导致实验过程耗时费力且效率低下。本文通过将AFM与光学图像自动识别相结合建立了单细胞力学特性快速测量方法。方法 分别利用UNet++深度学习网络模型和模板匹配算法识别出光学图像中的细胞及AFM探针,在此基础上自动确定细胞和AFM探针之间的空间位置关系,并控制AFM探针准确移动至目标细胞表面进行压痕实验。在光学显微镜视觉导引下利用AFM微操作将单个微球黏附至AFM探针悬臂梁制作得到球形针尖探针。选取HEK 293(人胚胎肾细胞)和MCF-7(人乳腺癌细胞)两种细胞进行实验。利用Hertz-Sneddon模型对在细胞表面获取的力曲线进行分析得到细胞杨氏模量。结果 基于光学图像识别结果可将AFM探针针尖准确移动至目标细胞(HEK 293或MCF-7)并对细胞力学特性进行测量,同时实验结果表明本文所提出的方法不仅适用于常规AFM锥形针尖探针,也适用于AFM球形针尖探针。结论 将AFM与光学图像识别结合显著提升了AFM细胞力学特性测量效率,为高通量自动化AFM单细胞力学特性探测提供了新的方法和思路,对于细胞力学特性研究具有广泛的积极意义。  相似文献   

10.
生命活动过程与生物分子内或生物分子间机械力的作用密不可分.原子力显微镜具有极高的力学分辨率,可以在近生理条件下对生物样品进行力学测量,是研究生物体系力学相互作用的理想工具.基于原子力显微镜的单分子力谱(AFM-SMFS)技术可以在单分子、单细胞水平测量生物分子内或生物分子间的相互作用.本文首先扼要介绍了AFM-SMFS技术,包括AFM-SMFS的基本原理、力谱测量及分析方法(蠕虫链模型、自由连接链模型和自由旋转链模型)以及探针的化学修饰方法(硅/氮化硅探针和镀金探针的修饰);重点介绍了利用AFM-SMFS技术对活体细胞表面蛋白(转化生长因子β1、CD20、热休克蛋白以及蛋白酪氨酸激酶)和糖类分子(葡萄糖和甘露糖)的近期研究进展;随后介绍了利用AFM-SMFS技术对活菌体表面蛋白(肝素结合血凝黏附素和Als5p黏附蛋白)和糖类分子(半乳糖、甘露糖、B族碳水化合物、荚膜多糖、α-甘露聚糖、β-甘露聚糖、β-葡聚糖以及几丁质)的近期研究进展;最后对AFM-SMFS技术的缺点和发展前景进行了总结和展望.  相似文献   

11.
A fundamental understanding of biofilm mechanical stability is critical in order to describe detachment and develop biofouling control strategies. It is thus important to characterise the elastic deformation and flow behaviour of the biofilm under different modes of applied force. In this study, the mechanical properties of a mature wastewater biofilm were investigated with methods including macroscale compression and microscale indentation using atomic force microscopy (AFM). The mature biofilm was found to be mechanically isotropic at the macroscale level as its mechanical properties did not depend on the scales and modes of loading. However, the biofilm showed a tendency for mechanical inhomogeneity at the microscale level as indentation progressed deeper into the matrix. Moreover, it was observed that the adhesion force had a significant influence on the elastic properties of the biofilm at the surface, subjected to microscale tensile loading. These results are expected to inform a damage-based model for biofilm detachment.  相似文献   

12.
Atomic force microscopy (AFM) has been used to study the micromechanical properties of biological systems. Its unique ability to function both as an imaging device and force sensor with nanometer resolution in both gaseous and liquid environments has meant that AFM has provided unique insights into the mechanical behaviour of tissues, cells and single molecules. As a surface scanning device, AFM can map properties such as adhesion and the Young's modulus of surfaces. As a force sensor and nanoindentor AFM can directly measure properties such as the Young's modulus of surfaces or the binding forces of cells. As a stress-strain gauge AFM can study the stretching of single molecules or fibres and as a nanomanipulator it can dissect biological particles such as viruses or DNA strands. The present paper reviews key research that has demonstrated the versatility of AFM and how it can be exploited to study the micromechanical behaviour of biological materials.  相似文献   

13.
14.
15.
Bacterial biofilms impair the operation of many industrial processes. Deinococcus geothermalis is efficient primary biofilm former in paper machine water, functioning as an adhesion platform for secondary biofilm bacteria. It produces thick biofilms on various abiotic surfaces, but the mechanism of attachment is not known. High-resolution field-emission scanning electron microscopy and atomic force microscopy (AFM) showed peritrichous adhesion threads mediating the attachment of D. geothermalis E50051 to stainless steel and glass surfaces and cell-to-cell attachment, irrespective of the growth medium. Extensive slime matrix was absent from the D. geothermalis E50051 biofilms. AFM of the attached cells revealed regions on the cell surface with different topography, viscoelasticity, and adhesiveness, possibly representing different surface layers that were patchily exposed. We used oscillating probe techniques to keep the tip-biofilm interactions as small as possible. In spite of this, AFM imaging of living D. geothermalis E50051 biofilms in water resulted in repositioning but not in detachment of the surface-attached cells. The irreversibly attached cells did not detach when pushed with a glass capillary but escaped the mechanical force by sliding along the surface. Air drying eliminated the flexibility of attachment, but it resumed after reimmersion in water. Biofilms were evaluated for their strength of attachment. D. geothermalis E50051 persisted 1 h of washing with 0.2% NaOH or 0.5% sodium dodecyl sulfate, in contrast to biofilms of Burkholderia cepacia F28L1 or the well-characterized biofilm former Staphylococcus epidermidis O-47. Deinococcus radiodurans strain DSM 20539(T) also formed tenacious biofilms. This paper shows that D. geothermalis has firm but laterally slippery attachment not reported before for a nonmotile species.  相似文献   

16.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

17.
Atomic force microscopy (AFM) has emerged as a powerful technique for mapping the surface morphology of biological specimens, including bacterial cells. Besides creating topographic images, AFM enables us to probe both physicochemical and mechanical properties of bacterial cell surfaces on a nanometer scale. For AFM, bacterial cells need to be firmly anchored to a substratum surface in order to withstand the friction forces from the silicon nitride tip. Different strategies for the immobilization of bacteria have been described in the literature. This paper compares AFM interaction forces obtained between Klebsiella terrigena and silicon nitride for three commonly used immobilization methods, i.e., mechanical trapping of bacteria in membrane filters, physical adsorption of negatively charged bacteria to a positively charged surface, and glutaraldehyde fixation of bacteria to the tip of the microscope. We have shown that different sample preparation techniques give rise to dissimilar interaction forces. Indeed, the physical adsorption of bacterial cells on modified substrata may promote structural rearrangements in bacterial cell surface structures, while glutaraldehyde treatment was shown to induce physicochemical and mechanical changes on bacterial cell surface properties. In general, mechanical trapping of single bacterial cells in filters appears to be the most reliable method for immobilization.  相似文献   

18.
The determination of the characteristics of micro-organisms in clinical specimens is essential for the rapid diagnosis and treatment of infections. A thorough investigation of the nanoscale properties of bacteria can prove to be a fundamental tool. Indeed, in the latest years, the importance of high resolution analysis of the properties of microbial cell surfaces has been increasingly recognized. Among the techniques available to observe at high resolution specific properties of microscopic samples, the Atomic Force Microscope (AFM) is the most widely used instrument capable to perform morphological and mechanical characterizations of living biological systems. Indeed, AFM can routinely study single cells in physiological conditions and can determine their mechanical properties with a nanometric resolution. Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work, we exploit the capabilities and peculiarities of AFM to analyze the mechanical properties of Escherichia coli in order to evidence with a high spatial resolution the mechanical properties of its structure. In particular, we will show that the bacterial membrane is not mechanically uniform, but contains stiffer areas. The force volume investigations presented in this work evidence for the first time the presence and dynamics of such structures. Such information is also coupled with a novel stiffness tomography technique, suggesting the presence of stiffer structures present underneath the membrane layer that could be associated with bacterial nucleoids.  相似文献   

19.
Atomic force microscopy (AFM) is a non-invasive microscopy to explore living biological systems like cells in liquid environment. Thus AFM is an appropriate tool to investigate surface chemical modification and its influence on biological systems. In particular, control over biomaterial surface chemistry can result in a regulated cell response. This report investigates the influence of adhesive and non-adhesive surfaces on the cell morphology and the influence of the cytoskeleton structure on the local mechanical properties. In this study, the main work concerns a thorough investigation of the height images obtained with an AFM as therecorded images provide the evolution of the mechanical properties of the cell as function of its local structure. Information on the cell elasticity due to the cytoskeleton organization is deduced when comparing the AFM tip indentation depth versus the distance between the cytoskeleton bundles for the different samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号