首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 233 毫秒
1.
白念珠菌引起的真菌感染严重威胁着人类健康。Ras/cAMP/PKA途径在白念珠菌菌丝发育、生物被膜形成、有性生殖以及耐药性中起着重要的调控作用,该通路由GTPases(Ras1和Ras2)、腺苷环化酶(Cyr1)、cAMP水解酶(Pde1和Pde2)以及PKA激酶(包括催化亚基Tpk1和Tpk2,调节亚基Bcy1)构成。环境因子通过Ras/cAMP/PKA途径调控下游转录因子,进而调节白念珠菌多种生物学行为。文中综述了近年来白念珠菌Ras/cAMP/PKA信号通路感应胞外环境因子和调控细胞行为等方面的研究进展。  相似文献   

2.
白念珠菌是人体内正常的共生微生物,也是最常见的机会性致病真菌。该菌最重要的生物学特征是其形态的多样性,不同形态细胞之间可频繁地相互转换。这种形态的可塑性与白念珠菌在宿主体内的定植能力、侵染性以及有性生殖等方面均有密切关系,也是该菌对外界环境变化的适应策略。酵母–菌丝相和white-opaque形态转换是白念珠菌中两种典型形态转换系统。宿主相关的环境因子和白念珠菌内源基因共同参与这些形态转换的调控。该文将综述近年来白念珠菌形态转换及其调控机制方面的进展,重点介绍参与菌丝发育和white-opaque形态转换的关键因子和调控通路。  相似文献   

3.
王天旭  杨丹丹  孙洵  张茂  苏畅  逯杨 《菌物学报》2020,39(11):2003-2013
白念珠菌Candida albicans是人体内的良性共生真菌,存在于宿主的口腔、表皮、胃肠道及阴道等处,在免疫能力低下的人群中可能引起严重的疾病。一般以二倍体的形式存在,且能在酵母、假菌丝和菌丝的状态之间转换。菌丝状态促进了白念珠菌的侵染能力,同时也可以使白念珠菌逃逸宿主的免疫攻击,在其对宿主的感染途径中起到了重要的作用。本综述将阐述白念珠菌菌丝形成的调控机制、菌丝的发育模式以及菌丝形态对宿主免疫系统的影响,并且简要介绍念珠菌属中热带念珠菌和耳念珠菌菌丝发育方面的相关研究。  相似文献   

4.
白念珠菌是最常见的人类条件致病性真菌。白念珠菌在接受环境刺激信息后,能通过多种信号转导途径使菌体发生形态、毒力等各种表型转换,从而适应生长环境,易于在宿主体内潜伏或致病。该文对白念珠菌表型转换信号通路中主要转录因子的最新研究进展进行了概述,重点介绍介导白念珠菌形态转换和毒力等表型的信号转导主要通路:cAMP-PKA通路和MAPK通路,这些通路的终点都是相关转录因子,如Efg1、Cph1。转录因子能与基因启动子结合,调控白念珠菌相应基因的转录,从而促进或抑制信号的传达,影响白念珠菌的增殖、形态转变、致病力等。可为相关研究工作者进一步了解白念珠菌表型转换的调节机制提供参考。  相似文献   

5.
白念珠菌是人体内重要的条件性致病真菌,形态多样性是其重要的生物学特征,不同形态细胞之间可相互转换。酵母相-菌丝相形态转换是白念珠菌中典型形态转换系统,与白念珠菌粘附、侵袭性等方面密切相关。宿主相关环境因素作用于白念珠菌,激活相应的信号传导通路,调控下游应答基因的表达,共同调控白念珠菌菌丝发育。结合目前关于白念珠菌形态转换的研究,认为广泛和深入的信号通路主要有:环磷酸腺苷/蛋白激酶A(c AMP/PKA)信号通路、丝裂原激活蛋白激酶(MAPK)信号通路、Rim101介导的p H信号通路和Tup1介导的负调控信号通路共同调控形态转换。该文将近年来国内外白念珠菌形态转换及其信号传导通路调控机制方面的进展进行综述分析。  相似文献   

6.
李超  管国波 《菌物学报》2020,39(11):2025-2034
近年来,随着广谱抗生素、化疗以及器官移植技术的广泛应用,真菌感染日益严重,从分子水平揭示病原真菌的致病机制对真菌感染的防控、治疗至关重要。微生物适应宿主微环境压力的能力在其共生与感染过程中发挥着关键作用,heat shock protein 90(Hsp90)是真核生物参与压力应答响应的分子伴侣,它不仅参与胞内蛋白质的折叠,还与许多底物蛋白相互作用共同调节病原真菌的形态发育、生物被膜形成、有性生殖、毒力以及耐药性。本文从真菌Hsp90的活性调节、底物蛋白,以及Hsp90与病原真菌形态发生、有性生殖、耐药性调控等方面综述了近年来真菌Hsp90信号通路的研究进展。  相似文献   

7.
李瑞莲  王倬  杜昱光 《微生物学报》2017,57(8):1206-1218
难治性真菌感染的临床分析发现,病灶感染病原常以生物被膜的形态存在。生物被膜的形成可帮助真菌躲避宿主细胞免疫系统清除和药物的攻击,所造成的持续性感染严重威胁人类健康,因此,认识研究真菌生物被膜及其耐药机理对于防治临床真菌感染有着重大意义。白色念珠菌是一种临床感染常见的条件性致病菌,也是目前真菌生物被膜研究的主要研究模型。白色念珠菌生物被膜主要由多糖、蛋白质和DNA构成,其形成由微生物间的群体感应调控,并受到环境中营养成分及其附着物表面性质影响。研究发现,胞外基质的屏障作用、耐药基因的表达等机制与生物被膜耐药性的产生密切相关。本文就白色念珠菌生物被膜的形成过程、结构组成、形成的影响因素、现有研究模型、耐药机制和治疗策略等几个方面介绍近年来的研究进展。  相似文献   

8.
从酵母转变为菌丝来适应不同的环境的能力是白念珠菌的特性之一,而菌丝体是其侵入宿主细胞引起机体全身性感染所必需的重要致病因素之一。白念珠菌这种重要的形态转换受到多种菌丝相关基因的调控。本文主要综述促有丝裂原活化蛋白激酶(MAPK)途径的转录活化因子Cph1p和cAMP蛋白激酶A(cAMP/PKA)调节途径中的转录活化因子Efg1p对菌丝形态转换的影响,以及两者与调节白念珠菌毒力的转录活化因子TEA/ATTS家族中的Tec1p对于分泌型天冬氨酸蛋白酶家族(Secreted aspartyl proteinases,SAPs)中SAP5的协同调节作用,以对可能存在于不同的菌丝转录活化因子之间对菌丝形态转换调控的协同作用进行初步探讨。  相似文献   

9.
孙强强  逯杨 《菌物学报》2018,37(10):1287-1298
白念珠菌是一种广泛存在于人体内的共生真菌,也是人类最常见的机会性致病真菌,可引起浅表感染甚至威胁生命的系统性感染。白念珠菌具有很强的形态可塑性,而且这种形态可塑性与致病性密切相关。白念珠菌在侵染的过程中可以进行酵母、假菌丝和真菌丝之间的形态转换。除此之外,white形态、opaque形态、gray形态和GUT细胞在宿主不同的部位具有生长繁殖优势。本文总结了白念珠菌各种形态特征以及它们与致病性之间的联系,同时我们也简述了宿主环境因素调控这些形态的发生与转换的机理。  相似文献   

10.
白念珠菌是一种重要的人类致病性真菌,其致病机制与多种因素有关.水解酶是白念珠菌最重要的毒力因子之一,在其入侵宿主过程中起关键作用.白念珠菌水解酶包括分泌型天冬氨酸蛋白酶、磷脂酶和脂肪酶,介导白念珠菌的表型转换、对宿主组织的黏附及对宿主免疫系统的干预,使其能够入侵宿主组织和逃避宿主的免疫防御机制.该文我们综述了白念珠菌水解酶的生物学属性和致病机制的研究进展.  相似文献   

11.
Genetics and genomics of Candida albicans biofilm formation   总被引:1,自引:0,他引:1  
Biofilm formation by the opportunistic fungal pathogen Candida albicans is a complex process with significant consequences for human health: it contributes to implanted medical device-associated infections. Recent advances in gene expression profiling and genetic analysis have begun to clarify the mechanisms that govern C. albicans biofilm development and acquisition of unique biofilm phenotypes. Such studies have identified candidate adhesin genes, and have revealed that biofilm drug resistance is multifactorial. Newly defined cell-cell communication pathways also have profound effects on biofilm formation. Future challenges include the elucidation of the structure and function of the extracellular exopolymeric substance that surrounds biofilm cells, and the extension of in vitro biofilm observations to newly developed in vivo biofilm models.  相似文献   

12.
Fungal biofilms are a major cause of human mortality and are recalcitrant to most treatments due to intrinsic drug resistance. These complex communities of multiple cell types form on indwelling medical devices and their eradication often requires surgical removal of infected devices. Here we implicate the molecular chaperone Hsp90 as a key regulator of biofilm dispersion and drug resistance. We previously established that in the leading human fungal pathogen, Candida albicans, Hsp90 enables the emergence and maintenance of drug resistance in planktonic conditions by stabilizing the protein phosphatase calcineurin and MAPK Mkc1. Hsp90 also regulates temperature-dependent C. albicans morphogenesis through repression of cAMP-PKA signalling. Here we demonstrate that genetic depletion of Hsp90 reduced C. albicans biofilm growth and maturation in vitro and impaired dispersal of biofilm cells. Further, compromising Hsp90 function in vitro abrogated resistance of C. albicans biofilms to the most widely deployed class of antifungal drugs, the azoles. Depletion of Hsp90 led to reduction of calcineurin and Mkc1 in planktonic but not biofilm conditions, suggesting that Hsp90 regulates drug resistance through different mechanisms in these distinct cellular states. Reduction of Hsp90 levels led to a marked decrease in matrix glucan levels, providing a compelling mechanism through which Hsp90 might regulate biofilm azole resistance. Impairment of Hsp90 function genetically or pharmacologically transformed fluconazole from ineffectual to highly effective in eradicating biofilms in a rat venous catheter infection model. Finally, inhibition of Hsp90 reduced resistance of biofilms of the most lethal mould, Aspergillus fumigatus, to the newest class of antifungals to reach the clinic, the echinocandins. Thus, we establish a novel mechanism regulating biofilm drug resistance and dispersion and that targeting Hsp90 provides a much-needed strategy for improving clinical outcome in the treatment of biofilm infections.  相似文献   

13.
Candida albicans biofilm development, modeling a host-pathogen interaction   总被引:1,自引:0,他引:1  
Medical device-associated infections involve the attachment of cells to a surface, production of an extracellular matrix and development of a mature biofilm. Many Candida albicans disease states involve biofilm growth. These infections have great impact on public health because organisms in biofilms exhibit dramatically reduced susceptibility to antifungal therapy. Progression to a mature biofilm is dependent on cell adhesion, extracellular matrix production and the yeast-to-hyphae transition. Numerous in vitro biofilm model systems have been successfully used to examine biofilm architecture, development, cell phenotypes and drug resistance. Although these studies have included a number of experimental variables to mimic infections in patients, it is difficult to accurately account for the multitude of host and infection-site variables that are probably important in humans. Recent studies have begun to explore C. albicans biofilms using animal biofilm infection models in order to more completely reflect the complexity of this host-fungal interaction.  相似文献   

14.
Candida species cause frequent infections owing to their ability to form biofilms - surface-associated microbial communities - primarily on implanted medical devices. Increasingly, mechanistic studies have identified the gene products that participate directly in the development of Candida albicans biofilms, as well as the regulatory circuitry and networks that control their expression and activity. These studies have uncovered new mechanisms and signals that govern C. albicans biofilm development and associated drug resistance, thus providing biological insight and therapeutic foresight.  相似文献   

15.
The molecular chaperone Hsp90 orchestrates regulatory circuitry governing fungal morphogenesis, biofilm development, drug resistance, and virulence. Hsp90 functions in concert with co-chaperones to regulate stability and activation of client proteins, many of which are signal transducers. Here, we characterize the first Hsp90 co-chaperone in the leading human fungal pathogen, Candida albicans. We demonstrate that Sgt1 physically interacts with Hsp90, and that it governs C. albicans morphogenesis and drug resistance. Genetic depletion of Sgt1 phenocopies depletion of Hsp90, inducing yeast to filament morphogenesis and invasive growth. Sgt1 governs these traits by bridging two morphogenetic regulators: Hsp90 and the adenylyl cyclase of the cAMP-PKA signaling cascade, Cyr1. Sgt1 physically interacts with Cyr1, and depletion of either Sgt1 or Hsp90 activates cAMP-PKA signaling, revealing the elusive link between Hsp90 and the PKA signaling cascade. Sgt1 also mediates tolerance and resistance to the two most widely deployed classes of antifungal drugs, azoles and echinocandins. Depletion of Sgt1 abrogates basal tolerance and acquired resistance to azoles, which target the cell membrane. Depletion of Sgt1 also abrogates tolerance and resistance to echinocandins, which target the cell wall, and renders echinocandins fungicidal. Though Sgt1 and Hsp90 have a conserved impact on drug resistance, the underlying mechanisms are distinct. Depletion of Hsp90 destabilizes the client protein calcineurin, thereby blocking crucial responses to drug-induced stress; in contrast, depletion of Sgt1 does not destabilize calcineurin, but blocks calcineurin activation in response to drug-induced stress. Sgt1 influences not only morphogenesis and drug resistance, but also virulence, as genetic depletion of C. albicans Sgt1 leads to reduced kidney fungal burden in a murine model of systemic infection. Thus, our characterization of the first Hsp90 co-chaperone in a fungal pathogen establishes C. albicans Sgt1 as a global regulator of morphogenesis and drug resistance, providing a new target for treatment of life-threatening fungal infections.  相似文献   

16.
17.
Biofilms are differentiated masses of microbes that form on surfaces and are surrounded by an extracellular matrix. Fungal biofilms, especially those of the pathogen Candida albicans, are a cause of infections associated with medical devices. Such infections are particularly serious because biofilm cells are relatively resistant to many common antifungal agents. Several in vitro models have been used to elucidate the developmental stages and processes required for C. albicans biofilm formation, and recent studies have begun to define biofilm genetic control. It is clear that cell-substrate and cell-cell interactions, hyphal differentiation and extracellular matrix production are key steps in biofilm development. Drug resistance is acquired early in biofilm formation, and appears to be governed by different mechanisms in early and late biofilms. Quorum sensing might be an important factor in dispersal of biofilm cells. The past two years have seen the emergence of several genomic strategies to uncover global events in biofilm formation and directed studies to understand more specific events, such as hyphal formation, in the biofilm setting.  相似文献   

18.
19.
Biofilms are a protected niche for microorganisms, where they are safe from antibiotic treatment and can create a source of persistent infection. Using two clinically relevant Candida albicans biofilm models formed on bioprosthetic materials, we demonstrated that biofilm formation proceeds through three distinct developmental phases. These growth phases transform adherent blastospores to well-defined cellular communities encased in a polysaccharide matrix. Fluorescence and confocal scanning laser microscopy revealed that C. albicans biofilms have a highly heterogeneous architecture composed of cellular and noncellular elements. In both models, antifungal resistance of biofilm-grown cells increased in conjunction with biofilm formation. The expression of agglutinin-like (ALS) genes, which encode a family of proteins implicated in adhesion to host surfaces, was differentially regulated between planktonic and biofilm-grown cells. The ability of C. albicans to form biofilms contrasts sharply with that of Saccharomyces cerevisiae, which adhered to bioprosthetic surfaces but failed to form a mature biofilm. The studies described here form the basis for investigations into the molecular mechanisms of Candida biofilm biology and antifungal resistance and provide the means to design novel therapies for biofilm-based infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号