首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
We have previously developed more than 100,000 T-DNA insertion mutant populations in japonica rice. These include simple knockouts as well as those for activation tagging. T-DNA insertion sites have been determined from more than 50,000 lines. The database for insertion positions is now open to the public, and these tagging lines are widely distributed to members of the rice research community. To utilize these genetic resources more efficiently, we are summarizing the important features of these tagging vectors, rice varieties, and flanking sequences. We also provide methods for handling such materials.  相似文献   

2.
Generation and flanking sequence analysis of a rice T-DNA tagged population   总被引:26,自引:0,他引:26  
Insertional mutagenesis provides a rapid way to clone a mutated gene. Transfer DNA (T-DNA) of Agrobacterium tumefaciens has been proven to be a successful tool for gene discovery in Arabidopsis and rice (Oryza sativa L. ssp. japonica). Here, we report the generation of 5,200 independent T-DNA tagged rice lines. The T-DNA insertion pattern in the rice genome was investigated, and an initial database was constructed based on T-DNA flanking sequences amplified from randomly selected T-DNA tagged rice lines using Thermal Asymmetric Interlaced PCR (TAIL-PCR). Of 361 T-DNA flanking sequences, 92 showed long T-DNA integration (T-DNA together with non-T-DNA). Another 55 sequences showed complex integration of T-DNA into the rice genome. Besides direct integration, filler sequences and microhomology (one to several nucleotides of homology) were observed between the T-DNA right border and other portions of the vector pCAMBIA1301 in transgenic rice. Preferential insertion of T-DNA into protein-coding regions of the rice genome was detected. Insertion sites mapped onto rice chromosomes were scattered in the genome. Some phenotypic mutants were observed in the T1 generation of the T-DNA tagged plants. Our mutant population will be useful for studying T-DNA integration patterns and for analyzing gene function in rice.Electronic Supplementary Material Supplementary material is available in the online version of this article at .Communicated by D. Mackill  相似文献   

3.
T-DNA insertional mutagenesis for activation tagging in rice   总被引:57,自引:0,他引:57  
Jeong DH  An S  Kang HG  Moon S  Han JJ  Park S  Lee HS  An K  An G 《Plant physiology》2002,130(4):1636-1644
  相似文献   

4.
About 25,000 rice T-DNA insertional mutant lines were generated using the vector pCAS04 which has both promoter-trapping and activation-tagging function. Southern blot analysis revealed that about 40% of these mutants were single copy integration and the average T-DNA insertion number was 2.28. By extensive phenotyping in the field, quite a number of agronomically important mutants were obtained. Histochemical GUS assay with 4,310 primary mutants revealed that the GUS-staining frequency was higher than that of the previous reports in various tissues and especially high in flowers. The T-DNA flanking sequences of some mutants were isolated and the T-DNA insertion sites were mapped to the rice genome. The flanking sequence analysis demonstrated the different integration pattern of the right border and left border into rice genome. Compared with Arabidopsis and poplar, it is much varied in the T-DNA border junctions in rice.  相似文献   

5.
6.
We have generated 47,932 T-DNA tag lines in japonica rice using activation-tagging vectors that contain tetramerized 35S enhancer sequences. To facilitate use of those lines, we isolated the genomic sequences flanking the inserted T-DNA via inverse polymerase chain reaction. For most of the lines, we performed four sets of amplifications using two different restriction enzymes toward both directions. In analyzing 41,234 lines, we obtained 27,621 flanking sequence tags (FSTs), among which 12,505 were integrated into genic regions and 15,116 into intergenic regions. Mapping of the FSTs on chromosomes revealed that T-DNA integration frequency was generally proportional to chromosome size. However, T-DNA insertions were non-uniformly distributed on each chromosome: higher at the distal ends and lower in regions close to the centromeres. In addition, several regions showed extreme peaks and valleys of insertion frequency, suggesting hot and cold spots for T-DNA integration. The density of insertion events was somewhat correlated with expressed, rather than predicted, gene density along each chromosome. Analyses of expression patterns near the inserted enhancer showed that at least half the test lines displayed greater expression of the tagged genes. Whereas in most of the increased lines expression patterns after activation were similar to those in the wild type, thereby maintaining the endogenous patterns, the remaining lines showed changes in expression in the activation tagged lines. In this case, ectopic expression was most frequently observed in mature leaves. Currently, the database can be searched with the gene locus number or location on the chromosome at http://www.postech.ac.kr/life/pfg/risd. On request, seeds of the T(1) or T(2) plants will be provided to the scientific community.  相似文献   

7.
We have screened a total of 5,500 T-DNA tagging rice lines in which beta-glucuronidase (GUS) gene sequence was randomly inserted as a transgene into the plant genome. Histochemical GUS assays were carried out to select the T-DNA tagging rice lines that show its expression in anther. Of the tagging lines screened, three lines were found to express GUS specifically in the anther that is about 0.05%. Microscopic observation of the anther-expressed lines showed specific expression patterns of GUS in the anther, either gametophytic or sporophytic specificities. Southern blot analysis revealed that the integration copy number of the transgene was 2.3 in average. The detailed expression patterns were analyzed and discussed.  相似文献   

8.
T-DNA and transposon tagging in aspen   总被引:3,自引:0,他引:3  
Abstract: We have investigated the somatic activity of the maize Activator (Ac) element in haploid and diploid aspen with the objective of developing an efficient transposon-based system for gene isolation in the model tree species Populus. It was shown that Ac is reinserted, frequently into or near coding regions in aspen, and therefore can be used for gene tagging studies. A number of phenotypic variants were also found following transformation of constructs harbouring the rolC gene. Comparative analyses of T-DNA flanking regions of variants and wild type lines indicate that T-DNA insertion has occurred in or near coding regions. However, the frequency of T-DNA insertion into genes is about one half of the frequency of Ac insertion hitting coding sequences. The results obtained give a proof-of-concept for transposon tagging in a tree system. Given the long generation cycles in tree species, gene tagging strategies are practical only to obtain dominant gain-of-function mutants that do not require selfing or test crossing. In order to obtain recessive loss-of-function mutants, we have regenerated haploid lines from immature pollen. These lines were successfully transformed with a construct containing the rolC transgene from Agrobacterium rhizogenes and Ac element from maize. The results indicate that Ac is also active in haploid aspen and hence can be used in general for gene tagging in trees.  相似文献   

9.
10.
A pipeline has been created for the characterization of Arabidopsis thaliana mutants by generating flanking sequence tags (FSTs) and optimized for economic, high-throughput production. The GABI-Kat collection of T-DNA mutagenized A. thaliana plants was used as a source of independent transgenic lines. The pipeline included robotized extraction of genomic DNA in a 96-well format, an adapter-ligation PCR method for amplification of plant sequences adjacent to T-DNA borders, automated purification and sequencing of PCR products, and computational trimming of the resulting sequence files. Data quality was significantly improved by (i) restriction digestion of the adaptor-ligation products to reduce trivial sequences caused by co-amplification of fragments derived from the free plasmid, and (ii) the design of the adaptor primers for the second amplification step to enhance selective generation of single PCR fragments, even from lines with multiple T-DNA insertions. Gel-purification was avoided by including these steps, the number of amplification reactions per line was reduced from four to three, and the percentage of lines that yielded at least one FST was increased from 66% to 86%. More than 58,000 FSTs have been submitted to GenBank and are available at http://www.mpiz-koeln.mpg.de/GABI-Kat/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号