首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Surface deposit feeders select food particles based upon characteristics including size, texture, specific gravity, and organic coatings. Spionid polychaetes feed at the sediment-water interface using a pair of ciliated palps and switch between surface deposit feeding and suspension feeding primarily as a function of water flow. Juveniles and adults of some spionid species have different stable isotopic carbon signals, indicating the ingestion of different food sources and potentially the ability to differentiate organic cues ontogenetically. In the present study, the feeding responses of juvenile and adult Streblospio benedicti Webster to seven organic coatings bound to glass microbeads were tested using five amino acids and two carbohydrates. Coated versus uncoated particles were presented in equal proportions based upon surface area. Juveniles and adults were highly selective for all seven types of organically coated beads—87.1% of all beads ingested were organically coated beads. For two of the organic coatings, there were ontogenetic differences; juveniles were more selective of threonine and adults were more selective of proline. These differences may result in ontogenetic diet shifts that allow maximization of energy and/or essential nutrients during critical early life-history stages. Particle selection in tentaculate surface deposit feeders is generally thought to occur primarily during particle contact and transport to the mouth, and is typically characterized as a passive process. Active particle selection at the site of the everted pharynx was observed and quantified for S. benedicti. Organically coated particles represented 50% of the ambient experimental treatment, 64.4% of the particles transported along the palp after contact, and 81.8% of the particles ingested after pharyngeal rejection behavior. Of the beads reaching the pharynx, 26.9% were rejected by ciliary sorting on the pharynx before ingestion, and 81.8% of the rejected beads at the site of the pharynx were uncoated. Our study demonstrates that microphagous feeders that generally handle food particles in bulk are capable of significant levels of active selection for organically coated particles.  相似文献   

2.
The global decline of freshwater mussels can be partially attributed to their complex life cycle. Their survival from glochidium to adulthood is like a long obstacle race, with juvenile mortality as a key critical point. Mass mortality shortly after entering into a juvenile state has been reported in both wild and captive populations, thus weakening the effective bivalve population. A similar phenomenon occurs during metamorphosis in natural and hatchery populations of juvenile marine bivalves. Based on a morphological analysis using scanning electron microscopy of newly formed juveniles of the freshwater species Margaritifera margaritifera (L.) (Margaritiferidae) and Unio mancus Lamarck (Unionidae), we show that a second metamorphosis, consisting of drastic morphological changes, occurs that leads to suspension feeding in place of deposit feeding by the ciliated foot. We hypothesize that suspension feeding in these two species improves due to a gradual development of several morphological features including the contact between cilia of the inner gill posterior filaments, the inner gill reflection, the appearance of the ctenidial ventral groove and the formation of the pedal palps. Regardless of the presence of available food, a suspension feeding mode replaces deposit feeding, and juveniles unable to successfully transition morphologically or adapt to the feeding changes likely perish.  相似文献   

3.
Previous studies have demonstrated that bivalve molluscs respond to changing food conditions through processes such as preferential selection and ingestion of particulate matter. Little is known, however, about the underlying mechanisms accountable for these responses. To further explain feeding processes at the level of the pallial organs, we determined pallial cavity residence times, or the amount of time it took particles to travel from the inhalant aperture to the stomach, in two species of bivalves, Crassostrea virginica and Mytilus edulis, under conditions of differing particle quality, particle concentration, and temperature. From these residence times, particle-handling times on the labial palps were determined. Diets of three different qualities were tested, including Rhodomonas lens cells, particles prepared from ground Spartina sp. detritus, and a 50/50 mixture of both. Bivalves were delivered one of the three diets along with 10-μm fluorescent polystyrene beads (tracer), removed from feeding chambers at intervals from 30 s up to 20 min, and placed in liquid nitrogen to halt particle transport. Digestive systems of bivalves were then dissected and examined for the presence of tracer beads. Particle-residence times in the pallial cavity and handling times on the labial palps of C. virginica were significantly affected by changes in diet type. Particle-handling times on the palps decreased with increasing diet quality and ranged from 2.2 min (100% R. lens) to 22.8 min (100% ground Spartina sp.), accounting for 88% and 99%, respectively, of the total time particles spent in the pallial cavity. In contrast, diet quality had little effect on particle-residence times in the pallial cavity of M. edulis. However, residence times were affected by temperature and diet concentration. Temperature significantly affected residence times at particle concentrations of both 20 and 100 particles μl−1, whereas particle concentration affected residence times at 20 °C, but not at 5 °C. Particle-handling times on the labial palps ranged from less than 1 to 5.5 min, depending on temperature and concentration, accounting for 50% to 82%, respectively, of the total time particles spent in the pallial cavity. We suggest that (1) observed interspecific differences in particle handling on the labial palps may be due to differences in palp morphology and function, and (2) particle sorting and selection on the labial palps is a rate-limiting step of pre-ingestive feeding processes in by bivalves.  相似文献   

4.
Maerl beds are highly biodiverse biogenic substrata that have been receiving increasing attention in the last decade. Although maerl beds represent important nursery areas for commercial fishes and molluscs, little is known on the trophic web of their communities. Community structure parameters of maerl bed of the Bay of Brest (species richness, abundance, biomass and dominating species) were studied in parallel with the carbon and nitrogen isotopic composition of their main benthic species (macrofaunal, and megafaunal organisms) in order to assess the trophic levels and differences in the potential food sources of maerl inhabitants. The major potential sources of energy were identified to originate either from epiphytic macroalgae and microphytobenthos both growing on maerl thalli, together with sedimenting (sedimentary) particulate organic matter (POM) originating from the water column. The majority of the macro- and megafaunal organisms investigated were filter feeders, selective-deposit feeders and predators/scavengers. Filter feeders fall into three different groups representing different trophic pathways (i) sponges feeding directly on POM (water column filter feeders I), (ii) ascidians and holothurians feeding on POM and probably captured pelagic preys (water column filter feeders II), and (iii) filter feeding molluscs and crustaceans were hypothesised to feed on microphytobenthos or on decaying sedimented POM (Interface filter feeders). Selective deposit feeders were also divided into two subgroups. Carnivores were also distinguished between those with scavenging habits and true predators. Coupling of the trophic levels observed with the community biomass structure revealed that most of the benthic biomass derives its food from detritic sedimented POM and/or microphytobenthos, with interface filter feeders (23% of the biomass), selective deposit feeders (12%). Carnivores made up to 14% of the total biomass. Generally stable isotopes ratio mean values overlap and cover a large range within feeding types, indicating a strong overlap in food sources and a high degree of complexity of the food web presumably due to the diversity of the potential food sources.  相似文献   

5.
In marine sedimentary habitats, chemoreception is thought to coordinate feeding in many deposit-feeding invertebrates such as polychaetes, snails, and clams. Relatively little is known, however, about the chemosensory structures and mechanism of signal transduction in deposit feeders. Using electron microscopy, confocal laser scanning microscopy (CLSM), and immunohistochemistry, we investigated the structure and function of putative chemosensory cells on the feeding appendages of a deposit-feeding polychaete species, Dipolydora quadrilobata. Tufts of putative sensory cilia were distributed over the prostomium and feeding palps and typically occurred next to pores. Examination of these regions with transmission electron microscopy revealed multiciliated cells with adjacent glandular cells beneath the pores. The sensory cells of prostomium and palps were similar, displaying an abundance of apical mitochondria and relatively short ciliary rootlets. Staining with antiserum against acetylated alpha-tubulin was examined by CLSM, and revealed axonal processes from putative sensory tufts on the palp surface to palp nerves, as well as many free nerve endings. Activity-dependent cell labeling experiments were used to test the sensitivity of putative sensory cells on the palps to an amino acid mixture that elicited feeding in previous behavioral experiments. In static exposures, the number of lateral and abfrontal cells labeled in response to the amino acid mixture was significantly greater than in the controls. Ultrastructural, positional, and now physiological evidence strongly suggests that spionid feeding palps are equipped with sensory cells, at least some of which function as chemoreceptors.  相似文献   

6.
Fatty acid and stable isotope analyses have previously been used to investigate foraging patterns of fish, birds, marine mammals and most recently cephalopod species. To evaluate the application of these methods for dietary studies in squid, it is important to understand the degree to which fatty acid and stable isotope signatures of prey species are reflected in the squids' tissue. Four groups of Lolliguncula brevis were fed on prey species with distinctly different fatty acid and stable isotope profiles over 30 consecutive days. One group of squid were fed fish for fifteen days, followed by crustaceans for a further fifteen days. A second and third group were fed exclusively on fish or crustaceans for thirty days. And a fourth group was fed on a mixture of fish and crustaceans for thirty days. Analysis of squid tissue showed that, after 10 days of feeding, fatty acid profiles of squid tended to reflect those of their prey. Squid that fed on a single prey type, i.e. fish or crustacean, showed only minor modifications in fatty acid proportions after the initial change and fatty acid profiles were clearly distinguishable between the two feeding groups. Shifts in fatty acid proportions towards respective prey profiles could clearly be observed in squid the diet of which was swapped after 15 days. Clear differences could also be seen in fatty acid profiles of squid feeding on a mixed diet with trends towards either fish or crustacean fatty acid signatures. Stable isotope signatures of squid tissues clearly distinguished between animals feeding on different diets and supported findings from fatty acid analysis, thus indicating both methods to be viable tools in feeding studies on squid species.  相似文献   

7.
Brooding in invertebrates serves to protect embryos from stressful external conditions by retaining progeny inside the female body, effectively reducing the risk of pelagic stages being exposed to predation or other environmental stressors, but with accompanying changes in pallial fluid characteristics, including reduced oxygen availability. Brooded embryos are usually immobile and often encapsulated, but in some Ostrea species the embryos move freely inside the female pallial cavity in close association with the mother’s gills for as long as eight weeks. We used endoscopic techniques to characterize the circulation pattern of embryos brooded by females of the oyster, Ostrea chilensis. Progeny at embryonic and veliger stages typically circulated in established patterns that included the use of dorsal and ventral food grooves (DFG, VFG) to move anteriorly on the gills. Both embryos and veligers accumulated around the mother’s palps, and remained there until an active maternal countercurrent moved them to the gill inhalant area. Both food grooves were able to move embryos, veligers, and food-particle aggregates anteriorly, but the DFG was more important in progeny transport; early embryos were moved more rapidly than veligers in the DFG. A microcirculation pattern of embryos was apparent when they were moved by gill lamellae: when they were close to the VFG, most embryos lost gill contact and ´´fell´´ down to the DFG. Those that actually reached the DFG moved anteriorly, but others came into contact with the base of the lamellae and again moved towards the VFG. The circulation pattern of the progeny appears well-suited for both cleaning them and directing them posteriorly to an area where there is more oxygen and food than in the palp region. This process for actively circulating progeny involves the feeding structures (gill and palps) and appears to be energetically costly for the female. It also interferes with feeding, which could explain the poor energy balance previously documented for brooding females of this species.  相似文献   

8.
Abstract. In marine soft‐sediment habitats, tissue loss by infuanal invertebrates can provide significant energetic input to higher trophic levels, have substantial impacts on individual behavior, growth, and fecundity, and resulting changes in bioturbation rates can secondarily affect community dynamics. The degree to which a community is affected by such sublethal predation depends in part on whether injured individuals can regenerate and on the speed at which they do so. Previously, we demonstrated differences in the rate of anterior segment and palp regeneration by the spionid polychaetes Pygospio elegans and Dipolydora quadrilobata. The current study examined the morphology of the anterior segment and palp regeneration in these species using scanning electron microscopy (SEM) and indirect immunohistochemistry with confocal laser scanning microscopy at 3, 6, 9, and 12 d post‐ablation. Antibodies for acetylated α‐tubulin and the neural tetrapeptide FMRFamide were used to label the regenerating nervous system. SEM revealed that the morphology of anterior tissue regeneration was similar for both species, but the ciliated food groove tended to form sooner on palps in P. elegans than on those of D. quadrilobata. In both species, palp regeneration and ciliated food groove formation were faster when only palps were removed. A shortened ciliated food groove is likely to reduce particle contact and transport efficiency in suspension and deposit feeding. Regenerating palp nerves were initially visible at 3 d following ablation of palps only, but at 6 d following ablation of five anterior segments. Following ablation of anterior segments, the regenerating nervous system was largely complete by 9 d, nuchal organs were innervated by 6 d, and processes of palp sensory cells were visible at 12 d. Contact chemoreception by sensory cells on the palps may be diminished during the early stages of regeneration, but chemoreception of waterborne cues via the nuchal organ should not.  相似文献   

9.
Evidence suggests that ciliated sensory structures on the feeding palps of spionid polychaetes may function as chemoreceptors to modulate deposit-feeding activity. To investigate the probable sensory nature of these ciliated cells, we used immunohistochemistry, epi-fluorescence, and confocal laser scanning microscopy to label and image sensory cells, nerves, and their organization relative to the anterior central nervous system in several spionid polychaete species. Antibodies directed against acetylated alphatubulin were used to label the nervous system and detail the innervation of palp sensory cells in all species. In addition, the distribution of serotonin (5-HT) and FMRFamide-like immunoreactivity was compared in the spionid polychaetes Dipolydora quadrilobata and Pygospio elegans. The distribution of serotonin immunoreactivity was also examined in the palps of Polydora cornuta and Streblospio benedicti. Serotonin immunoreactivity was concentrated in cells underlying the food groove of the palps, in the palp nerves, and in the cerebral ganglion. FMRFamide-like immunoreactivity was associated with the cerebral ganglia, nuchal organs and palp nerves, and also with the perikarya of ciliated sensory cells on the palps.  相似文献   

10.
The plasticity and function of the pallial organs were studied in the Pacific oyster Crassostrea gigas from three sites of Bourgneuf Bay (French Atlantic coast, 46-47°N, 1-2°W) characterized by different turbidity conditions. Labial palp area was closely and positively related to the turbidity gradient. No clear pattern was established between the gill area and the gradient of suspended particulate matter (SPM). The functional responses induced by these morphological variations were investigated in the laboratory by means of ecophysiological experiments and endoscopic observations. Oysters with different pallial organ areas were supplied with mixed suspensions of heat-killed Tetraselmis suecica and living Skeletonema costatum added to different concentrations of kaolinite to simulate low (SPM = 8.5 ± 0.4 mg l− 1) and high (SPM = 48.3 ± 1.4 mg l− 1) turbidity conditions. At each SPM concentration, heat-killed T. suecica were preferentially rejected in pseudofaeces compared to S. costatum, indicating a preingestive particle selection. At low seston load, clearance rate (CR) was closely and positively related to gill area and particle selection occurred only on the gills, between the ventral grooves and dorsal tracts. At higher seston load, palps exhibited a particle-sorting capacity dependent on gill area. Indeed, with small gills, an increase in selection efficiency (SE) and CR was positively related to palp area. On the other hand, large gills processed the particles without an effect of palps but with a decrease in CR. The functional responses associated with pallial organ variations clearly showed that the preingestive particle processing in oysters is an integrated mechanism dependant on the gill and labial palp areas.  相似文献   

11.
We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left‐sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.  相似文献   

12.
Dendraster excentricus is a common sand dollar of nearshore benthic habitats along the west coast of North America, and has the ability to feed either on deposited or suspended food particles. Field surveys and manipulative experiments demonstrated that intraspecific density and sediment organic matter (SOM) content of sediments are among the factors that regulate the proportion of sand dollars that forage as deposit versus suspension feeders. High local density was associated with a lower proportion of deposit feeding animals in both field surveys and under controlled experimental conditions. Conversely, the proportion of deposit feeders was elevated in treatments in which SOM levels were subsidized, regardless of local density. These data fit Levinton's model of resource limitation in relation to deposit-and suspension-feeding communities, and expand the list of biological processes regulated through density dependence. Analyses of carbon stable isotope ratios (δ13C) of sand dollars and their potential sources of primary production suggest individuals rely primarily on suspended particulate organic carbon (POC) or drift macroalgae. Sediment organic matter was not a substantial source of carbon for most individuals. There was a significant inverse relationship between size and δ13C values; smaller individuals depended to a greater extent on macroalgae. There was no consistent relationship between isotopic ratios, feeding mode and density, which may be due to the high mobility of the species, their ability to respond rapidly to changing environmental conditions and the dynamic nature of their habitat. Our results suggest that biological interactions influence feeding mode of this species. This is a complementary mechanism to those described previously, in which physical factors such as flow and lift/washout have been shown to regulate sand dollar positioning.  相似文献   

13.
Abstract. The external epithelial cilia and other surface structures of the nuculoid protobranchs Nuculana pernula and Nucula nitidosa were studied. The gill lamellae and labial palps are partly covered with very long cilia. These have a modified slender distal portion, an ordinary metazoan-type basal body, a basal foot. and a single, long cross-striated rootlet. In cilia on the gills of N. nitidosa , the basal foot is thick and attaches to the next basal body directly behind. Unciliated surface areas on the gills, labial palps, and foot are covered with a dense brushborder of microvilli. We observed no specific homologies between the cilia of the protobranchs studied and the epidermal cilia of the enigmatic Xenoturbella bocki , hence the recent hypothesis of a close connection of the latter to the protobranch bivalves is questioned.  相似文献   

14.
Palp morphology in two species of Prionospio (Polychaeta: Spionidae)   总被引:1,自引:0,他引:1  
Katrine Worsaae 《Hydrobiologia》2003,496(1-3):259-267
The palp morphology of Prionospio fallax Söderström, 1920 from Sweden and Prionospio cf. saldanha Day, 1961 from Thailand was examined with a scanning electron microscope. Prionospio fallax was also studied in vivo using light-microscopy. Both species have grooved feeding palps, adorned with up to five ciliary characters: frontal cilia, transverse ciliary bands (or bandlets), latero-frontal cirri, lateral cilia and randomly distributed non-motile cirri. All, except the frontal cilia and non-motile cirri, are asymmetrically arranged relative to the long axis of the palps. Prionospio fallax possesses transverse bandlets and the other four groups, while P. cf. saldanha has transverse bands (consisting of several contiguous bandlets), frontal cilia and some randomly scattered cirri. Asymmetrical palp ciliation was previously only known in Marenzelleria viridis (Verril, 1873) and the genus Scolelepis Blainville, 1828. The newly recognised transverse ciliary bands and bandlets are considered to be homologous with the transverse ciliary rows found basally on the palps of Paraprionospio pinnata (Ehlers, 1901). This multistate character (named transverse cilia) may prove useful in elucidating the phylogeny of the Prionospio-complex of genera.  相似文献   

15.
The Belize atolls—Glovers Reef, Lighthouse Reef and Turneffe Islands—show differences in geomorphology, lagoonal depth, bottom sediment, growth of mangroves and sea-grass, exposure to waves and currents as well as in their sedimentation rates and their age. Bivalve shell assemblages in lagoonal areas reflect these geomorphological differences. On each atoll, 32 to 44 recent sediment samples were taken (total number of samples 111) and bivalve shells subsequently identified. The resulting database (32,122 bivalve shells in total) was analysed using Q-mode cluster analyses. Both the distribution of species characteristic of different lagoonal habitats and the distribution of bivalves with different life and feeding habits were investigated. Epifaunal suspension feeders were found particularly on hard-bottom along the reef-crests or clinging to mangrove roots. Infaunal suspension feeders show a more diverse distribution. Deeper lagoonal parts and areas with mangrove growth are often inhabited by chemosymbiont-carrying bivalves, indicating locations of reduced sediment. Deep burrowing detritus feeders are very abundant in shallow-water areas with moderate to high water agitation and were seldom found in Halimeda-rich sediments.  相似文献   

16.
Bathymodiolus mussels are key species in many deep-sea chemosynthetic ecosystems. They often harbour two types of endosymbiotic bacteria in their gills, sulphur- and methane oxidisers. These bacteria take up sulphide and methane from the environment and provide energy to their hosts, supporting some of the most prolific ecosystems in the sea. In this study, we tested whether symbiont relative abundances in Bathymodiolus gills reflect variations in the highly spatially dynamic chemical environment of cold seep mussels. Samples of Bathymodiolus aff. boomerang were obtained from two cold seeps of the deep Gulf of Guinea, REGAB (5°47.86S, 9°42.69E, 3170 m depth) and DIAPIR (6°41.58S, 10°20.94E, 2700 m depth). Relative abundances of both symbiont types were measured by means of 3D fluorescence in situ hybridisation and image analysis and compared considering the local sulphide and methane concentrations and fluxes assessed via benthic chamber incubations. Specimens inhabiting areas with highest methane content displayed higher relative abundances of methane oxidisers. The bacterial abundances correlated also with carbon stable isotope signatures in the mussel tissue, suggesting a higher contribution of methane-derived carbon to the biomass of mussels harbouring higher densities of methane-oxidising symbionts. A dynamic adaptation of abundances of methanotrophs and thiotrophs in the gill could be a key factor optimising the energy yield for the symbiotic system and could explain the success of dual symbiotic mussels at many cold seeps and hydrothermal vents of the Atlantic and Gulf of Mexico.  相似文献   

17.
Observations of the feeding behavior of Cirriformia filigera (Delle Chiaje, 1825) (Annelida: Polychaeta) from the intertidal zone of S?o Francisco and Engenho D'água beaches (S?o Sebasti?o, State of S?o Paulo) were made in the laboratory. This species, like other cirratulids, is a deposit feeder, feeding mainly on sediment surface with the aid of its grooved and ciliated palps, which are used to capture food particles. The worm lies just beneath the substrate surface in a J-shaped tube. When feeding, it extends up to 4 palps over the sediment surface, capturing food particles which pass down the groove of each palp directly to the mouth. Only fine sand grains are ingested. The worm frequently extends 4 branchial filaments into the overlying water for aeration. When it moves with the prostomium sideways, it collects and transports sand grains that pass backwards along its ventral region until reaching the middle part of its body. Next, the parapodia and palps move the sand grains to the dorsal posterior end of the animal, covering this area with sand. Some sand grains are also ingested as the worm moves.  相似文献   

18.
The diet of Japanese eels, Anguilla japonica, was investigated using stomach content and stable isotope analyses. Stable isotope enrichment of carbon and nitrogen (Δδ13C and Δδ15N) was first estimated for A. japonica by comparing the isotopic signatures (δ13C and δ15N) of reared eels to that of their food. The estimated isotope enrichment was then applied to the diet estimation of A. japonica in the Kojima Bay-Asahi River system, Japan, combined with conventional stomach content analysis. Stable isotope enrichment varied among tissues, from 0.2‰ to 0.8‰ for carbon and from 1.3‰ to 2.1‰ for nitrogen. Nitrogen isotope enrichment of A. japonica muscle estimated in this study was 2.1‰, which was different from the previously reported mean δ15N enrichment of several animals of 3.4‰. These results indicate that isotope-based diet estimations for A. japonica need to use species- and tissue-specific values of isotope enrichment. In the diet analysis, stomach contents and stable isotopes revealed that (1) A. japonica appear to usually feed on a single type of prey species in each feeding session, (2) principal prey species were mud shrimp, Upogebia major, in brackish Kojima Bay and crayfish, Procambarus clarkia, in the Asahi River, (3) A. japonica in Kojima Bay primarily depend on the pelagic food web as a carbon source due to mud shrimp being filter feeders and eels in the Asahi River primarily depend on the littoral food web. Based on these results and the recently reported eel movements between Kojima Bay and the Asahi River, it appears that A. japonica can adapt to various feeding environments as opportunists, but also utilize the food resources by targeting a single type of prey species during a single feeding session.  相似文献   

19.
The feeding diversity of subtidal samples of macroinvertebrates from Ria Formosa was estimated with Shannon–Wiener information index and complementary evenness. The results were compared with other commonly used methodologies under the European Water Framework Directive, such as diversity indices, AMBI and ITI.Assuming that in a healthy environment all feeding groups are present, and that no group clearly dominates, the feeding diversity is expected to be maximal and the evenness feeding diversity will be close to 1. In degraded environments some feeding groups might be absent or having low relative abundance, and generally with one or two groups dominating the community. In this way the evenness feeding diversity index would measure deviations from expected values due to a degradation of the environment. Although confirmation of this approach needs to be tested in other shallow waters, the results obtained show interesting features.To each of the 297 species belonging to the Ria Formosa data matrix a feeding group was assigned, among six groups: surface deposit feeders, subsurface deposit feeders, herbivores, suspension feeders and suspension/deposit feeders (species which have the two feeding modes depending on food availability). The carnivorous, parasites, omnivorous and scavengers were all grouped together, forming the sixth group. Most of the stations of Ria Formosa showed high feeding diversity, which could correspond to a good or high ecological status (ES) except at one location, that occasionally showed low feeding diversity. This poor condition was essentially due to low water renewal and extreme environmental variation of some parameters, such as salinity. At some locations an intermediate feeding diversity was observed mainly due to natural accumulation of organic matter. Other commonly used indices also point out to the same tendencies.We propose the evenness feeding diversity estimate approach as a practical and apparently robust method to estimate the ES of shallow waters, which can be used together with other common indicators. This approach has also the advantage of showing low sensibility to small samples and to low taxonomic identification effort.  相似文献   

20.
The fish gill is a multifunctional organ responsible for gas exchange and ionic regulation. It is hypothesized that both morphological and functional differentiation can be found in the gills of the aquatic air-breathing fish, Trichogaster leeri. To test this, we used the air-breathing fish, Trichogaster leeri, to investigate various morphological/functional parameters. First, we evaluated the importance of performing the aquatic surface respiration behavior in T. leeri. A reduced survival rate was observed when fish were kept in the restrained cages in hypoxic conditions. On the gross anatomy of gills, we found evidence of both morphological and functional modification in the first and the second gills and are responsible for ionic regulation. There were large-bore arterioarterial shunts in the fourth gill arch. It is specialized for the transport of oxygenated blood and is less responsive to environmental stress. In addition, the anterior and the posterior gills differed in the Na+, K+-ATPase activity upon ionic stresses. That is, only the Na+, K+-ATPase activity of the anterior two gills was up-regulated significantly in the deionized water. Lastly, we found that the number of mitochondria-rich cells in the first and the second gills increased following ionic stress and no difference was found in the third and the fourth gills following such an exposure. These results supported the hypothesis that there are morphological and functional differences between anterior and posterior gill arches within the air-breathing Trichogaster leeri. In contrast, no significant difference was found among gills in gross anatomy, filament density and Na+, K+-ATPase activity in the non-air-breather, Barbodes schwanenfeldi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号