首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Cartilage has a limited capacity for self-repair and focal damage can eventually lead to complete degradation of the tissue. Early diagnosis of degenerative changes in cartilage is therefore essential. Contrast agent-based computed tomography and magnetic resonance imaging provide promising tools for this purpose. However, the common assumption in clinical applications that contrast agents reach steady-state distributions within the tissue has been of questionable validity. Characterization of nonequilibrium diffusion of contrast agents rather than their equilibrium distributions may therefore be more effective for image-based cartilage assessment. Transport of contrast agent through the extracellular matrix of cartilage can be affected by tissue compression due to matrix structural and compositional changes including reduced pore size and fluid content. We therefore investigate the effects of static compression on diffusion of three common contrast agents: sodium iodide, sodium diatrizoate, and gadolinium diethylenetriamine-pentaacid (Gd-DTPA). Results showed that static compression was associated with significant decreases in diffusivities for sodium iodide and Gd-DTPA, with similar (but not significant) trends for sodium diatrizoate. Molecular mass of contrast agents affected diffusivities as the smallest one tested, sodium iodide, showed higher diffusivity than sodium diatrizoate and Gd-DTPA. Compression-associated cartilage matrix alterations such as glycosaminoglycan and fluid contents were found to correspond with variations in contrast agent diffusivities. Although decreased diffusivity was significantly correlated with increasing glycosaminoglycan content for sodium iodide and Gd-DTPA only, diffusivity significantly increased for all contrast agents by increasing fluid fraction. Because compounds based on iodine and gadolinium are commonly used for computed tomography and magnetic resonance imaging, present findings can be valuable for more accurate image-based assessment of variations in cartilage composition associated with focal injuries.  相似文献   

2.
The chondrocytes of adult articular cartilage rely upon transport phenomena within their avascular extracellular matrix for many biological activities. Therefore, changes in matrix structure which influence cytokine transport parameters may be an important mechanism involved in the chondrocyte response to tissue compression. With this hypothesis in mind, partitioning and diffusion of 3-, 10-, and 40-kDa dextrans conjugated to tetramethylrhodamine, and 430-Da tetramethylrhodamine itself, were measured within statically compressed bovine articular cartilage explants using a novel experimental apparatus and desorption fluorescence method. Partitioning and diffusion were examined as functions of solute molecular weight and matrix proteoglycan density, and diffusion was measured versus static compression up to 35% volumetric strain. In general, partition coefficients and diffusivities were found to decrease with increasing solute molecular weight. In addition, for a given solute, diffusivities decreased significantly with increasing static compression. Results therefore suggest a possible role for transport limitations of relatively large molecular weight solutes within the extracellular matrix in mediating the biological response of chondrocytes to cartilage compression.  相似文献   

3.
Chondrocytes depend upon solute transport within the avascular extracellular matrix of articular cartilage for many of their biological activities. Alterations to solute transport parameters may therefore mediate the cell response to tissue compression. While interstitial solute transport may be supplemented by convection during dynamic tissue compression, matrix compression is also associated with decreased diffusivities. Such trade-offs between increased convection and decreased diffusivities of solutes in dynamically compressed cartilage remain largely unexplored. We measured diffusion and convection coefficients of a wide range of solutes in mature bovine cartilage explant disks subjected to radially unconfined axial ramp compression and release. Solutes included approximately 500 Da fluorophores bearing positive and negative charges, and 10 kDa dextrans bearing positive, neutral, and negative charges. Significantly positive values of convection coefficients were measured for several different solutes. Findings therefore support a role for solute convection in mediating the cartilage biological response to dynamic compression.  相似文献   

4.
The biomechanical functions of articular cartilage are governed largely by the composition and density of its specialized extracellular matrix. Relationships between matrix density and functional indices such as mechanical properties or interstitial solute diffusivities have been previously explored. However, direct correlations between mechanical properties and solute transport parameters have received less attention, despite potential application of this information for cartilage functional assessment both in vivo and in vitro. The objective of this study was therefore to examine relationships among solute diffusivities, mechanical properties, and matrix density of compressed articular cartilage. Matrix density varied due to natural variation among explants and due to applied static compression. Matrix density of statically compressed cartilage explants was characterized by glycoaminoglycan (GAG) weight fraction and fluid volume fraction, while diffusion coefficients of a wide range of solutes were measured to characterize the transport environment. Explant mechanical properties were characterized by a non-linear Young's modulus (axial stress-strain ratio) and a non-linear Poisson's ratio (radial-to-axial strain ratio). Solute diffusivities were consistently correlated with Young's modulus, as well as with explant GAG weight and fluid volume fractions. Therefore, in vitro mechanical tests may provide a means of assessing transport environments in cartilage-like materials, while in vivo measurements of solute transport (for example with magnetic resonance imaging) may be a useful complement in identifying localized differences in matrix density and mechanical properties.  相似文献   

5.
Chondrocytes depend upon solute transport within the avascular extracellular matrix of adult articular cartilage for many of their biological activities. Alterations to bioactive solute transport may, therefore, represent a mechanism by which cartilage compression is transduced into cellular metabolic responses. We investigated the effects of cartilage static compression on diffusivity and partitioning of a range of model solutes including dextrans of molecular weights 3 and 40 kDa, and tetramethylrhodamine (a 430 Da fluorophore). New fluorescence methods were developed for real-time visualization and measurement of transport within compressed cartilage explants. Experimental design allowed for multiple measurements on individual explants at different compression levels in order to minimize confounding influences of compositional variations. Results demonstrate that physiological levels of static compression may significantly decrease solute diffusivity and partitioning in cartilage. Effects of compression were most dramatic for the relatively high molecular weight solutes. For 40 kDa dextran, diffusivity decreased significantly (p<0.01) between 8% and 23% compression, while partitioning of 3 and 40 kDa dextran decreased significantly (p<0.01) between free-swelling conditions and 8% compression. Since diffusivity and partitioning can influence pericellular concentrations of bioactive solutes, these observations support a role for perturbations to solute transport in mediating the cartilage biological response to compression.  相似文献   

6.
Leddy HA  Guilak F 《Biophysical journal》2008,95(10):4890-4895
Articular cartilage is the connective tissue that lines joints and provides a smooth surface for joint motion. Because cartilage is avascular, molecular transport occurs primarily via diffusion or convection, and cartilage matrix structure and composition may affect diffusive transport. Because of the inhomogeneous compressive properties of articular cartilage, we hypothesized that compression would decrease macromolecular diffusivity and increase diffusional anisotropy in a site-specific manner that depends on local tissue strain. We used two fluorescence photobleaching methods, scanning microphotolysis and fluorescence imaging of continuous point photobleaching, to measure diffusion coefficients and diffusional anisotropy of 70 kDa dextran in cartilage during compression, and measured local tissue strain using texture correlation. For every 10% increase in normal strain, the fractional change in diffusivity decreased by 0.16 in all zones, and diffusional anisotropy increased 1.1-fold in the surface zone and 1.04-fold in the middle zone, and did not change in the deep zone. These results indicate that inhomogeneity in matrix structure and composition may significantly affect local diffusive transport in cartilage, particularly in response to mechanical loading. Our findings suggest that high strains in the surface zone significantly decrease diffusivity and increase anisotropy, which may decrease transport between cartilage and synovial fluid during compression.  相似文献   

7.
The extent to which articular cartilage hydraulic permeability is anisotropic is largely unknown, despite its importance for understanding mechanisms of joint lubrication, load bearing, transport phenomena, and mechanotransduction. We developed and applied new techniques for the direct measurement of hydraulic permeability within statically compressed adult bovine cartilage explant disks, dissected such that disk axes were perpendicular to the articular surface. Applied pressure gradients were kept small to minimize flow-induced matrix compaction, and fluid outflows were measured by observation of a meniscus in a glass capillary under a microscope. Explant disk geometry under radially unconfined axial compression was measured by direct microscopic observation. Pressure, flow, and geometry data were input to a finite element model where hydraulic permeabilities in the disk axial and radial directions were determined. At less than 10% static compression, near free-swelling conditions, hydraulic permeability was nearly isotropic, with values corresponding to those of previous studies. With increasing static compression, hydraulic permeability decreased, but the radially directed permeability decreased more dramatically than the axially directed permeability such that strong anisotropy (a 10-fold difference between axial and radial directions) in the hydraulic permeability tensor was evident for static compression of 20-40%. Results correspond well with predictions of a previous microstructurally-based model for effects of tissue mechanical deformations on glycosaminoglycan architecture and cartilage hydraulic permeability. Findings inform understanding of structure-function relationships in cartilage matrix, and suggest several biomechanical roles for compression-induced anisotropic hydraulic permeability in articular cartilage.  相似文献   

8.
Solute transport within articular cartilage is of central importance to tissue physiology, and may mediate effects of mechanical compression on cell metabolism. We therefore developed and applied a freeze-substitution method for fixation of cartilage explant disks which had been compressed axially during radial solute desorption. Dextrans were used as model solutes. Explant morphology was well preserved and nonequilibrium solute concentration distributions were stable for several hours at room temperature. For desorption from explants compressed statically to 0-46% strain, analysis of laser confocal images and comparison to a theoretical model permitted measurement of effective diffusivities. Results were consistent with previous studies suggesting a role for transport limitations in mediating the decreases of chondrocyte metabolic rates associated with static compression. In explants compressed dynamically (23+/-5% strain at 0.001 Hz), evidence was obtained for the augmentation of effective transport rate of 3 kDa dextrans by oscillatory interstitial fluid flows. This suggests that augmented solute transport may play a role in mediating the increases of chondrocyte metabolic rates associated with dynamic compression. Methods appear suitable for quantitative studies of transport within mechanically compressed cartilage-like tissues, and may be valuable for identification of loading environments which optimize solute transport in tissue engineering applications.  相似文献   

9.
A bovine cartilage explant system was used to evaluate the effects of injurious compression on chondrocyte apoptosis and matrix biochemical and biomechanical properties within intact cartilage. Disks of newborn bovine articular cartilage were compressed in vitro to various peak stress levels and chondrocyte apoptotic cell death, tissue biomechanical properties, tissue swelling, glycosaminoglycan loss, and nitrite levels were quantified. Chondrocyte apoptosis occurred at peak stresses as low as 4.5 MPa and increased with peak stress in a dose-dependent manner. This increase in apoptosis was maximal by 24 h after the termination of the loading protocol. At high peak stresses (>20 MPa), greater than 50% of cells apoptosed. When measured in uniaxial confined compression, the equilibrium and dynamic stiffness of explants decreased with the severity of injurious load, although this trend was not significant until 24-MPa peak stress. In contrast, the equilibrium and dynamic stiffness measured in radially unconfined compression decreased significantly after injurious stresses of 12 and 7 MPa, respectively. Together, these results suggested that injurious compression caused a degradation of the collagen fibril network in the 7- to 12-MPa range. Consistent with this hypothesis, injurious compression caused a dose-dependent increase in tissue swelling, significant by 13-MPa peak stress. Glycosaminoglycans were also released from the cartilage in a dose-dependent manner, significant by 6- to 13-MPa peak stress. Nitrite levels were significantly increased above controls at 20-MPa peak stress. Together, these data suggest that injurious compression can stimulate cell death as well as a range of biomechanical and biochemical alterations to the matrix and, possibly, chondrocyte nitric oxide expression. Interestingly, chondrocyte programmed cell death appears to take place at stresses lower than those required to stimulate cartilage matrix degradation and biomechanical changes. While chondrocyte apoptosis may therefore be one of the earliest responses to tissue injury, it is currently unclear whether this initial cellular response subsequently drives cartilage matrix degradation and changes in the biomechanical properties of the tissue.  相似文献   

10.
Electrokinetic phenomena contribute to biomechanical functions of articular cartilage and underlie promising methods for early detection of osteoarthritic lesions. Although some transport properties, such as hydraulic permeability, are known to become anisotropic with compression, the direction-dependence of cartilage electrokinetic properties remains unknown. Electroosmosis experiments were therefore performed on adult bovine articular cartilage samples, whereby fluid flows were driven by electric currents in directions parallel and perpendicular to the articular surface of statically compressed explants. Magnitudes of electrokinetic coefficients decreased slightly with compression (from approximately -7.5 microL/As in the range of 0-20% compression to -6.0 microL/As in the 35-50% range) consistent with predictions of microstructure-based models of cartilage material properties. However, no significant dependence on direction of the electrokinetic coupling coefficient was detected, even for conditions where the hydraulic permeability tensor is known to be anisotropic. This contrast may also be interpreted using microstructure-based models, and provides insights into structure-function relationships in cartilage extracellular matrix and physical mediators of cell responses to tissue compression. Findings support the use of relatively simple isotropic modeling approaches for electrokinetic phenomena in cartilage and related materials, and indicate that measurement of electrokinetic properties may provide particularly robust means for clinical evaluation of cartilage matrix integrity.  相似文献   

11.
A primary mechanism of solute transport in articular cartilage is believed to occur through passive diffusion across the articular surface, but cyclical loading has been shown experimentally to enhance the transport of large solutes. The objective of this study is to examine the effect of dynamic loading within a theoretical context, and to investigate the circumstances under which convective transport induced by dynamic loading might supplement diffusive transport. The theory of incompressible mixtures was used to model the tissue (gel) as a mixture of a gel solid matrix (extracellular matrix/scaffold), and two fluid phases (interstitial fluid solvent and neutral solute), to solve the problem of solute transport through the lateral surface of a cylindrical sample loaded dynamically in unconfined compression with frictionless impermeable platens in a bathing solution containing an excess of solute. The resulting equations are governed by nondimensional parameters, the most significant of which are the ratio of the diffusive velocity of the interstitial fluid in the gel to the solute diffusivity in the gel (Rg), the ratio of actual to ideal solute diffusive velocities inside the gel (Rd), the ratio of loading frequency to the characteristic frequency of the gel (f), and the compressive strain amplitude (epsilon 0). Results show that when Rg > 1, Rd < 1, and f > 1, dynamic loading can significantly enhance solute transport into the gel, and that this effect is enhanced as epsilon 0 increases. Based on representative material properties of cartilage and agarose gels, and diffusivities of various solutes in these gels, it is found that the ranges Rg > 1, Rd < 1, correspond to large solutes, whereas f > 1 is in the range of physiological loading frequencies. These theoretical predictions are thus in agreement with the limited experimental data available in the literature. The results of this study apply to any porous hydrated tissue or material, and it is therefore plausible to hypothesize that dynamic loading may serve to enhance solute transport in a variety of physiological processes.  相似文献   

12.
The effects of mechanical compression of calf cartilage explants on the catabolism and loss into the medium of proteoglycans and proteins radiolabeled with [35S]sulfate and [3H]proline were examined. A single 2- or 12-h compression of 3-mm diameter cartilage disks from a thickness of 1.25 to 0.50 mm, or slow cyclic compression (2 h on/2 h off) from 1.25 mm to 1.00, 0.75, or 0.50 mm for 24 h led to transient alterations and/or sustained increases in loss of radiolabeled macromolecules. The effects of imposing or removing loads were consistent with several compression-induced physical mediators including fluid flow, diffusion, and matrix disruption. Cyclic compression induced convective fluid flow and enhanced the loss of 35S- and 3H-labeled macromolecules from tissue into medium. In contrast, prolonged static compression induced matrix consolidation and appeared to hinder the diffusional transport and loss of 35S- and 3H-labeled macromolecules. Since high amplitude cyclic compression led to a sustained increase in the rate of loss of 3H- and 35S-labeled macromolecules that was accompanied by an increase in the rate of loss of [3H]hydroxyproline residues and an increase in tissue hydration, such compression may have caused disruption of the collagen meshwork. The 35S-labeled proteoglycans lost during such cyclic compression were of smaller average size than those from controls, but contained a similarly low proportion (approximately 15%) that could form aggregates with excess hyaluronate and link protein. The size distribution and aggregability of the remaining tissue proteoglycans and 35S-labeled proteoglycans were not markedly affected. The loss of tissue proteoglycan paralleled the loss of 35S-labeled macromolecules. This study provides a framework for elucidating the biophysical mechanisms involved in the redistribution, catabolism, and loss of macromolecules during cartilage compression.  相似文献   

13.
Resistance to fluid flow within cartilage extracellular matrix is provided primarily by a dense network of rod-like glycosaminoglycans (GAGs). If the geometrical organization of this network is random, the hydraulic permeability tensor of cartilage is expected to be isotropic. However, experimental data have suggested that hydraulic permeability may become anisotropic when the matrix is mechanically compressed, contributing to cartilage biomechanical functions such as lubrication. We hypothesized that this may be due to preferred GAG rod orientations and directionally-dependent reduction of inter-GAG spacings which reflect molecular responses to tissue deformations. To examine this hypothesis, we developed a model for effects of compression which allows the GAG rod network to deform consistently with tissue-scale deformations but while still respecting limitations imposed by molecular structure. This network deformation model was combined with a perturbation analysis of a classical analytical model for hydraulic permeability based on molecular structure. Finite element analyses were undertaken to ensure that this approach exhibited results similar to those emerging from more exact calculations. Model predictions for effects of uniaxial confined compression on the hydraulic permeability tensor were consistent with previous experimental results. Permeability decreased more rapidly in the direction perpendicular to compression than in the parallel direction, for matrix solid volume fractions associated with fluid transport in articular cartilage. GAG network deformations may therefore introduce anisotropy to the permeability (and other GAG-associated matrix properties) as physiological compression is applied, and play an important role in cartilage lubrication and other biomechanical functions.  相似文献   

14.
Fluid transport and mechanical properties of articular cartilage: a review   总被引:17,自引:0,他引:17  
This review is aimed at unifying our understanding of cartilage viscoelastic properties in compression, in particular the role of compression-dependent permeability in controlling interstitial fluid flow and its contribution to the observed viscoelastic effects. During the previous decade, it was shown that compression causes the permeability of cartilage to drop in a functional manner described by k = ko exp (epsilon M) where ko and M were defined as intrinsic permeability parameters and epsilon is the dilatation of the solid matrix (epsilon = tr delta u). Since permeability is inversely related to the diffusive drag coefficient of relative fluid motion with respect to the porous solid matrix, the measured load-deformation response of the tissue must therefore also depend on the non-linearly permeable nature of the tissue. We have summarized in this review our understanding of this non-linear phenomenon. This understanding of these flow-dependent viscoelastic effects are put into the historical perspective of a comprehensive literature review of earlier attempts to model the compressive viscoelastic properties of articular cartilage.  相似文献   

15.
The strain and strain-rate-dependent response of articular cartilage in unconfined compression was studied theoretically. The transient stress and stiffness of cartilage were determined for strain rates ranging from zero to infinity. It is shown, for a given compressive strain, that the axial stress initially increases quickly as a function of strain rate, and then increases progressively more slowly towards the stress corresponding to the instantaneous response. The volume change of the tissue does not give its transient stiffness uniquely, because of the strong strain-rate dependence. The variation of tissue stiffness is primarily determined by the transient stiffness of the radial fibrils. Load sharing between the solid matrix and fluid pressurization also depends on the strain rate. At 15% axial compression, the matrix bears more than 80% of the applied load at a strain rate of 0.005%/s, while the fluid pressurization contributes more than 80% of the load at a strain rate of 0.15%/s. These results show the interplay between fibril reinforcement and fluid pressurization in articular cartilage: the fluid drives fibril stiffening which in turn produces high pore pressure at high strain rates.As a secondary objective of the present work, a fibrillar continuum element was formulated to replace the fibrillar spring element used previously in fibril-reinforced modeling, in order to eliminate the deformation incompatibility between the spring system and the nonfibrillar matrix. The results obtained using the two fibrillar elements were compared with the closed-form solutions for the static and instantaneous responses for the case of large deformation. It was found for unconfined compression that using the spring elements did not generally result in greater numerical errors than using the fibrillar continuum elements.  相似文献   

16.
The distributions and diffusivities of Na+, Ca2+ and Cl- in chondroitin sulphate (CS), hyaluronate (HA) and proteoglycan solutions were measured using equilibrium dialysis and a capillary tube method. Measurements were made for a range of glycosaminoglycan (GAG) concentrations up to those normally found in dense connective tissue (10% CS, 2.5% HA), ionic strengths up to normal physiological concentrations (0.15 M) and for different combinations of monovalent and divalent cations. The partition coefficients, Ki, of the positive ions increased with increasing matrix concentration and with decreasing ionic strength but with one exception the selectivity coefficient KCaNa = square root of KCa/KNa was close to unity, indicating nearly ideal Donnan distributions. The ionic diffusivities decreased very much like those of small neutral solutes with increasing matrix concentration and with one exception were relatively independent of ionic strength, The exception in both cases was low matrix concentrations and low ionic strengths for which the diffusivity of Ca2+ was an order of magnitude lower and selectivity coefficients were approximately 2. We conclude that at physiological ionic strengths and GAG concentrations the distributions of small ions are determined by simple electrostatic interactions, without binding or condensation, and the diffusivities are not affected by the electrostatic field.  相似文献   

17.
Articular cartilage is known to be anisotropic and inhomogeneous because of its microstructure. In particular, its elastic properties are influenced by the arrangement of the collagen fibres, which are orthogonal to the bone-cartilage interface in the deep zone, randomly oriented in the middle zone, and parallel to the surface in the superficial zone. In past studies, cartilage permeability has been related directly to the orientation of the glycosaminoglycan chains attached to the proteoglycans which constitute the tissue matrix. These studies predicted permeability to be isotropic in the undeformed configuration, and anisotropic under compression. They neglected tissue anisotropy caused by the collagen network. However, magnetic resonance studies suggest that fluid flow is "directed" by collagen fibres in biological tissues. Therefore, the aim of this study was to express the permeability of cartilage accounting for the microstructural anisotropy and inhomogeneity caused by the collagen fibres. Permeability is predicted to be anisotropic and inhomogeneous, independent of the state of strain, which is consistent with the morphology of the tissue. Looking at the local anisotropy of permeability, we may infer that the arrangement of the collagen fibre network plays an important role in directing fluid flow to optimise tissue functioning.  相似文献   

18.
This study examined the effects of mechanical compression on engineered cartilage in a novel hybrid culture system. Cylindrical holes were cut in discs of bovine articular cartilage and filled with agarose gels containing chondrocytes. These constructs were compressed in radiolabeled medium under static or oscillatory unconfined compression. Oscillatory compression at 1 Hz significantly stimulated synthesis above static control levels. Control experiments indicate that oscillatory compression does not stimulate freshly cast gels (without annuli), but does so after several weeks. This may be because physiologic fluid flow levels do not occur until sufficient extracellular matrix has accumulated. Finite element models predict minimal fluid flow in the gel core, and minimal differences in flow patterns between free and constrained gels. However, the models predict fluid pressures in constrained gels to be substantially higher than those in free gels. Our results suggest that pressure variations may influence synthesis of engineered cartilage matrices, with implications for construct development and post-implantation survival.  相似文献   

19.
M Wong  M Siegrist  X Cao 《Matrix biology》1999,18(4):391-399
In this study, we investigated the biosynthetic response of full thickness, adult bovine articular cartilage explants to 45 h of static and cyclic unconfined compression. The cyclic compression of articular cartilage resulted in a progressive consolidation of the cartilage matrix. The oscillatory loading increased protein synthesis ([35S]methionine incorporation) by as much as 50% above free swelling control values, but had an inhibitory influence on proteoglycan synthesis ([35SO4] incorporation). As expected, static compression was associated with a dose-dependent decrease in biosynthetic activity. ECM oligomeric proteins which were most affected by mechanical loading were fibronectin and cartilage oligomeric matrix protein (COMP). Static compression at all amplitudes caused a significant increase in fibronectin synthesis over free swelling control levels. Cyclic compression of articular cartilage at 0.1 Hz and higher was consistently associated with a dramatic increase in the synthesis of COMP as well as fibronectin. The biosynthetic activity of chondrocytes appears to be sensitive to both the frequency and amplitude of the applied load. The results of this study support the hypothesis that cartilage tissue can remodel its extracellular matrix in response to alterations in functional demand.  相似文献   

20.
Solute transport through the extracellular matrix is essential for cellular activities in articular cartilage. Increased solute transport via fluid convection may be a mechanism by which dynamic compression stimulates chondrocyte metabolism. However, loading conditions that optimally augment transport likely vary for different solutes. To investigate effects of dynamic loading on transport of a bioactive solute, triangular mechanical loading waveforms were applied to cartilage explants disks while interstitial transport of a fluorescent glucose analog was monitored. Peak-to-peak compression amplitudes varied from 5-50% and frequencies varied from 0.0006-0.1 Hz to alter the spatial distribution and magnitude of oscillatory fluid flow. Solute transport was quantified by monitoring accumulation of fluorescence in a saline bath circulated around the explant. Individual explants were subjected to a series of compression protocols, so that effects of loading on solute desorption could be observed directly. Maximum increases in solute transport were obtained with 10-20% compression amplitudes at 0.1 Hz; similar loading protocols were previously found to stimulate chondrocyte metabolism in vitro. Results therefore support hypotheses relating to increased solute transport as a mediator of the cartilage biological response to dynamic compression, and may have application in mechanical conditioning of cartilage constructs for tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号