首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
2.
3.
RNA sequencing studies have identified hundreds of non‐coding RNAs in bacteria, including regulatory small RNA (sRNA). However, our understanding of sRNA function has lagged behind their identification due to a lack of tools for the high‐throughput analysis of RNA–RNA interactions in bacteria. Here we demonstrate that in vivo sRNA–mRNA duplexes can be recovered using UV‐crosslinking, ligation and sequencing of hybrids (CLASH). Many sRNAs recruit the endoribonuclease, RNase E, to facilitate processing of mRNAs. We were able to recover base‐paired sRNA–mRNA duplexes in association with RNase E, allowing proximity‐dependent ligation and sequencing of cognate sRNA–mRNA pairs as chimeric reads. We verified that this approach captures bona fide sRNA–mRNA interactions. Clustering analyses identified novel sRNA seed regions and sets of potentially co‐regulated target mRNAs. We identified multiple mRNA targets for the pathotype‐specific sRNA Esr41, which was shown to regulate colicin sensitivity and iron transport in E. coli. Numerous sRNA interactions were also identified with non‐coding RNAs, including sRNAs and tRNAs, demonstrating the high complexity of the sRNA interactome.  相似文献   

4.
Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed. Here we report a protocol (sRNA‐FISH) for efficient fluorescent detection of sRNAs in plants. This protocol is suitable for application in diverse plant species and tissue types. The use of locked nucleic acid probes and antibodies conjugated with different fluorophores allows the detection of two sRNAs in the same sample. Using this method, we have successfully detected the co‐localization of miR2275 and a 24‐nucleotide phased small interfering RNA in maize anther tapetal and archesporial cells. We describe how to overcome the common problem of the wide range of autofluorescence in embedded plant tissue using linear spectral unmixing on a laser scanning confocal microscope. For highly autofluorescent samples, we show that multi‐photon fluorescence excitation microscopy can be used to separate the target sRNA‐FISH signal from background autofluorescence. In contrast to colorimetric in situ hybridization, sRNA‐FISH signals can be imaged using super‐resolution microscopy to examine the subcellular localization of sRNAs. We detected maize miR2275 by super‐resolution structured illumination microscopy and direct stochastic optical reconstruction microscopy. In this study, we describe how we overcame the challenges of adapting FISH for imaging in plant tissue and provide a step‐by‐step sRNA‐FISH protocol for studying sRNAs at the cellular and even subcellular level.  相似文献   

5.
Small RNAs (sRNAs), particularly those that act by limited base pairing with mRNAs, are part of most regulatory networks in bacteria. In many cases, the base‐pairing interaction is facilitated by the RNA chaperone Hfq. However, not all bacteria encode Hfq and some base‐pairing sRNAs do not require Hfq raising the possibility of other RNA chaperones. Candidates are proteins with homology to FinO, a factor that promotes base pairing between the FinP antisense sRNA and the traJ mRNA to control F plasmid transfer. Recent papers have shown that the Salmonella enterica FinO‐domain protein ProQ binds a large suite of sRNAs, including the RaiZ sRNA, which represses translation of the hupA mRNA, and the Legionella pneumophila protein RocC binds the RocR sRNA, which blocks expression of competence genes. Here we discuss what is known about FinO‐domain structures, including the recently solved Escherichia coli ProQ structure, as well as the RNA binding properties of this family of proteins and evidence they act as chaperones. We compare these properties with those of Hfq. We further summarize what is known about the physiological roles of FinO‐domain proteins and enumerate outstanding questions whose answers will establish whether they constitute a second major class of RNA chaperones.  相似文献   

6.
Argonaute proteins and their associated small RNAs (sRNAs) are evolutionarily conserved regulators of gene expression. Gametocyte‐specific factor 1 (Gtsf1) proteins, characterized by two tandem CHHC zinc fingers and an unstructured C‐terminal tail, are conserved in animals and have been shown to interact with Piwi clade Argonautes, thereby assisting their activity. We identified the Caenorhabditis elegans Gtsf1 homolog, named it gtsf‐1 and characterized it in the context of the sRNA pathways of C. elegans. We report that GTSF‐1 is not required for Piwi‐mediated gene silencing. Instead, gtsf‐1 mutants show a striking depletion of 26G‐RNAs, a class of endogenous sRNAs, fully phenocopying rrf‐3 mutants. We show, both in vivo and in vitro, that GTSF‐1 interacts with RRF‐3 via its CHHC zinc fingers. Furthermore, we demonstrate that GTSF‐1 is required for the assembly of a larger RRF‐3 and DCR‐1‐containing complex (ERIC), thereby allowing for 26G‐RNA generation. We propose that GTSF‐1 homologs may act to drive the assembly of larger complexes that act in sRNA production and/or in imposing sRNA‐mediated silencing activities.  相似文献   

7.
The importance of small RNA (sRNA) regulators has been recognized across all domains of life. In bacteria, sRNAs typically control the expression of virulence and stress response genes via antisense base pairing with mRNA targets. Originally dubbed “non-coding RNAs,” a number of bacterial antisense sRNAs have been found to encode functional proteins. Although very few of these dual-function sRNAs have been characterized, they have been found in both gram-negative and gram-positive organisms. Among the few known examples, the functions and mechanisms of regulation by dual-function sRNAs are variable. Some dual-function sRNAs depend on the RNA chaperone Hfq for base pairing-dependent regulation (riboregulation); this feature appears so far exclusive to gram-negative bacterial sRNAs. Other variations can be found in the spatial organization of the coding region with respect to the riboregulation determinants. How the functions of encoded proteins relate to riboregulation is for the most part not understood. However, in one case it appears that there is physiological redundancy between protein and riboregulation functions. This mini-review focuses on the two best-studied bacterial dual-function sRNAs: RNAIII from Staphylococcus aureus and SgrS from Escherichia coli and includes a discussion of what is known about the structure, function and physiological roles of these sRNAs as well as what questions remain outstanding.  相似文献   

8.
Many bacteria use small RNAs (sRNAs) and the RNA chaperone Hfq to regulate mRNA stability and translation. Hfq, a ring‐shaped homohexamer, has multiple faces that can bind both sRNAs and their mRNA targets. We find that Hfq has at least two distinct ways in which it interacts with sRNAs; these different binding properties have strong effects on the stability of the sRNA in vivo and the sequence requirements of regulated mRNAs. Class I sRNAs depend on proximal and rim Hfq sites for stability and turn over rapidly. Class II sRNAs are more stable and depend on the proximal and distal Hfq sites for stabilization. Using deletions and chimeras, we find that while Class I sRNAs regulate mRNA targets with previously defined ARN repeats, Class II sRNAs regulate mRNAs carrying UA‐rich rim‐binding sites. We discuss how these different binding modes may correlate with different roles in the cell, with Class I sRNAs acting as emergency responders and Class II sRNAs acting as silencers.  相似文献   

9.
10.
11.
12.
13.
14.
Quorum sensing is a mechanism of cell‐to‐cell communication that allows bacteria to coordinately regulate gene expression in response to changes in cell‐population density. At the core of the Vibrio cholerae quorum‐sensing signal transduction pathway reside four homologous small RNAs (sRNAs), named the quorum regulatory RNAs 1–4 (Qrr1–4). The four Qrr sRNAs are functionally redundant. That is, expression of any one of them is sufficient for wild‐type quorum‐sensing behaviour. Here, we show that the combined action of two feedback loops, one involving the sRNA‐activator LuxO and one involving the sRNA‐target HapR, promotes gene dosage compensation between the four qrr genes. Gene dosage compensation adjusts the total Qrr1–4 sRNA pool and provides the molecular mechanism underlying sRNA redundancy. The dosage compensation mechanism is exquisitely sensitive to small perturbations in Qrr levels. Precisely maintained Qrr levels are required to direct the proper timing and correct patterns of expression of quorum‐sensing‐regulated target genes.  相似文献   

15.
16.
The RNA chaperone protein Hfq is required for the function of all small RNAs (sRNAs) that regulate mRNA stability or translation by limited base pairing in Escherichia coli. While there have been numerous in vitro studies to characterize Hfq activity and the importance of specific residues, there has been only limited characterization of Hfq mutants in vivo. Here, we use a set of reporters as well as co-immunoprecipitation to examine 14 Hfq mutants expressed from the E. coli chromosome. The majority of the proximal face residues, as expected, were important for the function of sRNAs. The failure of sRNAs to regulate target mRNAs in these mutants can be explained by reduced sRNA accumulation. Two of the proximal mutants, D9A and F39A, acted differently from the others in that they had mixed effects on different sRNA/mRNA pairs and, in the case of F39A, showed differential sRNA accumulation. Mutations of charged residues at the rim of Hfq interfered with positive regulation and gave mixed effects for negative regulation. Some, but not all, sRNAs accumulated to lower levels in rim mutants, suggesting qualitative differences in how individual sRNAs are affected by Hfq. The distal face mutants were expected to disrupt binding of ARN motifs found in mRNAs. They were more defective for positive regulation than negative regulation at low mRNA expression, but the defects could be suppressed by higher levels of mRNA expression. We discuss the implications of these observations for Hfq binding to RNA and mechanisms of action.  相似文献   

17.
18.
Exposure to oxygen and light generates photooxidative stress by the bacteriochlorophyll a mediated formation of singlet oxygen (1O2) in Rhodobacter sphaeroides. Our study reports the genome‐wide search for small RNAs (sRNAs) involved in the regulatory response to 1O2. By using 454 pyrosequencing and Northern blot analysis, we identified 20 sRNAs from R. sphaeroides aerobic cultures or following treatment with 1O2 or superoxide (O2). One sRNA was specifically induced by 1O2 and its expression depends on the extracytoplasmic function sigma factor RpoE. Two sRNAs induced by 1O2 and O2 were cotranscribed with upstream genes preceded by promoters with target sequences for the alternative sigma factors RpoHI and RpoHII. The most abundant sRNA was processed in the presence of 1O2 but not by O2. From this and a second sRNA a conserved 3′‐segment accumulated from a larger precursor. Absence of the RNA chaperone Hfq changed the half‐lives, abundance and processing of 1O2‐affected sRNAs. Orthologues of three sRNA genes are present in different alpha‐proteobacteria, but the majority was unique to R. sphaeroides or Rhodobacterales species. Our discovery that abundant sRNAs are affected by 1O2 exposure extends the knowledge on the role of sRNAs and Hfq in the regulatory response to oxidative stress.  相似文献   

19.
20.
Non-coding, small RNAs (sRNAs) have been identified in a wide spectrum of organisms ranging from bacteria to humans; however, the role and mechanisms of these sRNA in plant immunity is largely unknown. To determine possible roles of sRNA in plant–pathogen interaction, we carried out a high-throughput sRNA sequencing of Brassica campestris using non-infected plants and plants infected with Erwinia carotovora. Consistent with our hypothesis that distinct classes of host sRNAs alerts their expression levels in response to infection, we found that: (1) host 28-nt sRNAs were strongly increased under pathogen infection; and (2) a group of host sRNAs homologous to the pathogen genome also accumulated at significantly higher level. Our data thus suggest several distinct classes of the host sRNAs may enhance their function by up-regulation of their expression/stability in response to bacterial pathogen challenges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号