首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel phosphate-induced gene, phi-2, has been identified by its induction on addition of phosphate to phosphate-starved tobacco BY-2 cells. The predicted gene product of phi-2 has significant homology to a group of bZIP proteins involved in ABA-signaling pathways, and phi-2 also responded to ABA treatment. A previously isolated phosphate-induced gene, phi-1, (Sano et al. (1999) Plant Cell Physiol. 40: 1) was also responsive to ABA. Although phosphate addition induced semi-synchronous cell division in phosphate-starved tobacco BY-2 cells, ABA adversely affected cell division. Detailed examination revealed that the high levels of phosphate required to induce semi-synchronous cell division seemed to be perceived as indicators of stress by the cells. One of the stress indicators perceived by the cells is a cytoplasmic pH change, to which phi-2 and phi-1 genes respond. The different components of the cell's response to phosphate induction are discussed.  相似文献   

2.
Brassinosteroids (BRs) are steroidal phytohormones that are essential for many processes in plant growth and development, such as cell expansion, vascular differentiation, and responses to stress. The effects of BRs on cell division are unclear, as attested by contradictory published results. To determine the effect of BRs on cell division, the tobacco (Nicotiana tabacum) BY-2 cell line, which is a widely-used model system in plant cell biology, was used. It was found that brassinolide (BL) promoted cell division only during the early phase of culture and in the absence of auxin (2,4-D). This promotion of cell division was confirmed by RNA gel blot analyses using cell-cycle-related gene probes. At later stages in the culturing periods of BL-supplied and 2,4-D-supplied BY-2 cells, differences in cell multiplication and cell-cycle-related gene expression were observed. Moreover, the BL-treated BY-2 cells had morphological differences from the 2,4-D-treated cells. To determine whether suppressed organellar DNA replication limited this promotion of cell division during the early culture phase, this replication was examined and it was found that BL treatment had no effect on activating organellar (plastid- and mitochondrial-) DNA synthesis. As preferential organellar DNA synthesis, which is activated by 2,4-D, is necessary during successive cell divisions in BY-2 cells, these data suggest that the mechanism of the promotion of cell division by BL treatment is distinct from that regulated by the balance of auxin and cytokinin.  相似文献   

3.
Telomerase is a specialized RNA-directed DNA polymerase that adds telomeric repeats onto the ends of linear eukaryotic chromosomes. It was recently reported that the low, basal level of telomerase activity markedly increased at early S-phase of the cell cycle, and auxin further increased the S-phase-specific telomerase activity in tobacco BY-2 cells. In this study we show that abscisic acid (ABA), a phytohormone known to induce the cyclin-dependent protein kinase inhibitor, effectively abolished both the auxin- and S-phase-specific activation of telomerase in a concentration- and time-dependent fashion in synchronized tobacco BY-2 cells. These results suggest that there exists a hormonal cross-talk between auxin and ABA for the regulation of telomerase activity during the cell cycle of tobacco cells. Treatment of synchronized BY-2 cells with the protein kinase inhibitor staurosporine or H-7 effectively prevented the S-phase-specific activation of telomerase activity. By contrast, when okadaic acid or cantharidin, potent inhibitors of protein phosphatase 2A (PP2A), was applied to the cells, the S-phase-specific high level of telomerase activity was continuously maintained in the cell cycle for at least 14 h after release from M-phase arrest. Incubation of tobacco cell extracts with exogenous PP2A rapidly abrogated in vitro telomerase activity, while okadaic acid and cantharidin blocked the action of PP2A, effectively restoring in vitro telomerase activity. Taken together, these findings are discussed in the light of the suggestion that antagonistic functions of auxin and ABA, and reciprocal phosphorylation and dephosphorylation of telomerase complex, are necessarily involved in the cell cycle-dependent modulation of telomerase activity in tobacco cells.  相似文献   

4.
Endoreduplication is a common process in plants that allows cells to increase their DNA content. In the tobacco cell cultures studied in this work it can be induced by simple hormone deprivation. Mesophyll protoplast-derived cells cultured in the presence of NAA (auxin) and BAP (cytokinin) keep on dividing, while elongation and concomitant DNA endoreduplication are induced and maintained in a medium containing only NAA. If aphidicolin is given to the two types of culture, no effect is observed on elongating, endoreduplicating cells. However, the cells programmed for division switch to elongation and DNA endoreduplication. Thus aphidicolin, an inhibitor of the replicative DNA polymerases, alpha and delta, does not inhibit endoreduplication, and furthermore actually induces it when the mitotic cell cycle is blocked. DNA duplication and cell growth can only be completely blocked if ddTTP, an inhibitor of DNA polymerase-beta, is given together with aphidicolin. This result implies that an aphidicolin-resistant DNA polymerase, such as the repair-associated DNA polymerase-beta, can mediate DNA synthesis during endoreduplication and can substitute for polymerases-alpha and -delta when the latter are inhibited. Similar results are obtained in cultures of the BY-2 cell line by withdrawing auxins from the culture medium. In this cell line endoreduplication is induced only in a small proportion of the cells. A greater proportion of the cells are blocked in the G(2) phase of the cell cycle.  相似文献   

5.
6.
Although activation of A-type cyclin-dependent kinase (CDKA) is required for plant cell division, little is known about how CDKA is activated before commitment to cell division. Here, we show that auxin is required for the formation of active CDKA-associated complexes, promoting assembly of the complex in tobacco suspension culture Bright Yellow-2 (BY-2) cells. Protein gel blot analysis revealed that CDKA levels increased greatly after stationary-phase BY-2 cells were subcultured into fresh medium to re-enter the cell cycle. However, these increasing levels subsided when cells were subcultured into auxin-deprived medium, and a subtle increase was observed after subculturing into sucrose-deprived medium. Additionally, p13(suc1)-associated kinase activity did not increase significantly after subculturing into either auxin- or sucrose-deprived medium, but increased strongly after subculturing into medium containing both auxin and sucrose. Using gel filtration, we found that p13(suc1)-associated kinase activity against tobacco retinoblastoma-related protein was maximal in fractions corresponding to the molecular mass of the cyclin/CDKA complex. Interestingly, this peak distribution of high molecular-mass fractions of CDKA disappeared after cells were subcultured into auxin-deprived medium. These findings suggest an important role for auxin in the assembly of active CDKA-associated complexes.  相似文献   

7.
8.
When tobacco BY-2 cells that had been treated with aphidicolinfor 24 h were cultured in the absence of aphidicolin, DNA synthesiswas initiated within 1 h. DNA synthesis was completed within4 h and then the preprophase band of microtubules (PPB) developed.However, when cells that had been treated with aphidicolin werecultured in the absence of aphidicolin for 1 h and then againin its presence, DNA synthesis, which was initiated during thehour in the absence of aphidicolin, was not completed withina further 10 h in the presence of aphidicolin. Moreover, thePPB did not develop even after the PPB had appeared and disappearedin cells that were cultured contemporaneously in the continuedabsence of aphidicolin. The development of the PPB seems to be causally associated withthe nuclear cycle of cell division in tobacco BY-2 cells. Thisprocess seems to require the completion of the replication ofall, or almost all, of the nuclear DNA. (Received July 25, 1992; Accepted November 24, 1992)  相似文献   

9.
We have described the modulation of four auxin-regulated genes during the growth cycle of suspension-cultured tobacco (Nicotiana tabacum [L.] var White Burley) cells. The genes were transiently expressed 2 to 8 h after transfer of stationary phase cells to fresh medium, during the transition from the quiescent phase of cells leaving the mitotic cycle to the synthesis phase of the cell cycle. After this transient induction, the cells showed a decreased sensitivity to auxin. Although the expression pattern suggests that induction of these genes might be important for cell division, over-production of antisense mRNA for one of these genes (pCNT103) did not influence cell division in transgenic tobacco cells. Furthermore, stimuli such as salicylic acid were capable of inducing gene expression but were unable to restore cell division. Although these data do not conclusively exclude a role for these genes in cell division, their significance in this process is discussed in view of their homology with other auxin-induced genes and in view of the specificity of hormone-induced early responses.  相似文献   

10.
We have isolated a cytokinin up-regulated cDNA clone, H13, froman early stage of cultured tobacco mesophyll protoplasts bya differential display method. The expression of this gene wasspecifically induced by natural and synthetic cytokinins includingN-(2-chloro-4-pyridyl)-N'-phenylurea (4PU30), a diphenylurea-typecytokinin, although the simultaneous presence of auxin was alsorequired. It seems that the preceding treatment of the tobaccomesophyll protoplasts by auxin is necessary for the gene torespond to cytokinin. The addition of a cytokinin antagonist,compound 182, which suppressed the induction of cell divisionin tobacco mesophyll protoplasts, completely abolished the expressionof this gene. Though the predicted gene product of H13 did notsuggest us any sequences of defined functions, two domains ofthe predicted sequence had significant homology to several reportedsequences in the data base. The gene product of H13 is proposedto have a role in regenerating cell wall in cultured protoplasts,since a cDNA clone E6, from cotton fiber cells, which has themost closely related structure to H13, has been isolated fromcells which showed active cellulose synthesis. This suppositionis supported by the evidence that in the absence of cytokinin,cell wall regeneration was significantly suppressed, resultingin failure of the induction of cell division. Thus, the geneproduct of H13 is supposed to have a role in regenerating cellwalls and facilitating the progression of the cell cycle, resultingin the sustained cell division of tobacco mesophyll protoplasts. 1These authors are equally contributed to this work.  相似文献   

11.
Factors with potential for regulating pyrimidine biosynthesis in plant tissue have been explored in quiescent cells of Helianthus tuberosus induced to divide by auxin addition. Investigations confined to the first highly synchronous cell cycle of the tuber explants revealed that the relative activity of asparate carbamoyltransferase (ACTase) to ornithinecarbamoyltransferase (OCTase) (enzymes competing for carbamoyl phosphate for the pyrimidine and arginine pathways, respectively) changes from 0.5 in quiescent cells to 3.0 by the end of the first cell cycle. This was interpreted as a change in the state of cell function from accumulation of storage arginine to cell division with a concomitant demand for pyrimidine nucleotides for nucleic acid synthesis. The rise in ACTase activity began at the same time as the initiation of DNA synthesis and was dependent on continued DNA synthesis. OCTase activity declined whether or not auxin was added to the medium, whereas ACTase activity was observed to decline only in the absence of DNA synthesis.  相似文献   

12.
Auxin-autonomous growth in vitro may be related to the integration and expression of the aux and rol genes from the root-inducing (Ri) plasmid in plant cells infected by agropine-type Agrobacterium rhizogenes. To elucidate the functions of the aux and rol genes in plant cell division, plant cell lines transformed with the aux1 and aux2 genes or with the rolABCD genes were established using tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells. The introduction of the aux1 and aux2 genes enabled the auxin-autonomous growth of BY-2 cells, but the introduction of the rolABCD genes did not affect the auxin requirement of the BY-2 cells. The results clearly show that the aux genes are necessary for auxinautotrophic cell division, and that the rolABCD genes are irrelevant in auxin autotrophy.Key words: Agrobacterium rhizogenes, auxin-autotrophic cell, auxin biosynthesis, hairy root, plant cell division, Ri plasmid, T-DNA, aux, rol, tobacco BY-2 cells  相似文献   

13.
The directional transport of the plant hormone auxin depends on transcellular gradients of auxin-efflux carriers that continuously cycle between plasma membrane and intracellular compartments. This cycling has been proposed to depend on actin filaments. However, the role of actin for the polarity of auxin transport has been disputed. To get insight into this question, actin bundling was induced by overexpression of the actin-binding domain of talin in tobacco BY-2 cells and in rice plants. This bundling can be reverted by addition of auxins, which allows to address the role of actin organization on the flux of auxin. In both systems, the reversion of a normal actin configuration can be restored by addition of exogenous auxins and this fully restores the respective auxin-dependent functions. These findings lead to a model of a self-referring regulatory circuit between polar auxin transport and actin organization. To further dissect the actin-auxin oscillator, we used photoactivated release of caged auxin in tobacco cells to demonstrate that auxin gradients can be manipulated at a subcellular level.Key words: actin, auxin, BY-2, caged compounds, cell division, coleoptile, rice, tobacco  相似文献   

14.
TONSOKU(TSK)/MGOUN3/BRUSHY1 of Arabidopsis thaliana encodes a nuclear leucine-glycine-aspargine (LGN) domain protein implicated to be involved in genome maintenance, and mutants with defects in TSK show a fasciated stem with disorganized meristem structures. We identified a homolog of TSK from tobacco BY-2 cells (NtTSK), which showed high sequence conservation both in the LGN domain and in leucine-rich repeats with AtTSK. The NtTSK gene was expressed during S phase of the cell cycle in tobacco BY-2 cells highly synchronized for cell division. The tsk mutants of Arabidopsis contained an increased proportion of cells with 4C nuclei and cells expressing cyclin B1 compared with the wild type. These results suggest that TSK is required during the cell cycle and defects of TSK cause the arrest of cell cycle progression at G2/M phase.  相似文献   

15.
The role of auxin-binding protein 1 in the expansion of tobacco leaf cells   总被引:9,自引:0,他引:9  
Tobacco leaf was used to investigate the mechanism of action of auxin-binding protein 1 (ABP1). The distributions of free auxin, ABP1, percentage of leaf nuclei in G2 and the amount of auxin-inducible growth were each determined in control tobacco leaves and leaves over-expressing Arabidopsis ABP1. These parameters were compared with growth of tobacco leaves, measured both spatially and temporally throughout the entire expansion phase. Within a defined window of leaf development, juvenile leaf cells that inducibly expressed Arabidopsis ABP1 prematurely advanced nuclei to the G2 phase. The ABP1-induced increase in cell expansion occured before the advance to the G2 phase, indicating that the ABP1-induced G2 phase advance is an indirect effect of cell expansion. The level of ABP1 was highest at the position of maximum cell expansion, maximum auxin-inducible growth and where the free auxin level was the lowest. In contrast, the position of maximum cell division correlated with higher auxin levels and lower ABP1 levels. Consistent with the correlations observed in leaves, tobacco cells (BY-2) in culture displayed two dose-dependent responses to auxin. At a low auxin concentration, cells expanded, while at a relatively higher concentration, cells divided and incorporated [3H]-thymidine. Antisense suppression of ABP1 in these cells dramatically reduced cell expansion with negligible effect on cell division. Taken together, the data suggest that ABP1 acts at a relatively low level of auxin to mediate cell expansion, whereas high auxin levels stimulate cell division via an unidentified receptor.  相似文献   

16.
Caffeine induced a mitosis-like state in cultured tobacco (Nicotiana tabacum L.) BY-2 cells after DNA synthesis had been arrested by aphidicolin. Cells were synchronized upon removal of aphidicolin. When aphidicolin was readded, the cell cycle was again interrupted and caffeine, when added with aphidicolin, induced the mitosis-like state in 5–10% of cells.  相似文献   

17.
《Plant science》1998,132(1):55-62
In several plant systems increase in glyoxalase I activity has been correlated with cell proliferation. Cell cycle studies of tobacco protoplasts indicate a rise in glyoxalase I activity prior to G2/M phase. Further, synthetic auxin, NAA, induced glyoxalase I activity and cell division significantly. This induction was specific in response to auxin only. Cytokinins alone do not induce cell division or increase enzyme activity. Analysis of glyoxalase I cDNA sequence from soybean shows significant homology with auxin inducible genes particularly Nt107 and limited but strong similarity with identified plant mitotic cyclins, implicating glyoxalase I in possible relationship with certain cell division regulating factors.  相似文献   

18.
The transition from the vegetative phase to the reproductive phase is a major developmental process in flowering plants.The underlying mechanism controlling this cellular process remains a research focus in the field of plant molecular biology.In the present work,we identified a gene encoding the C3H2C3-type RING finger protein Nt RCP1 from tobacco BY-2 cells.Enzymatic analysis demonstrated that Nt RCP1 is a functional E3 ubiquitin ligase.In tobacco plants,expression level of Nt RCP1 was higher in the reproductive shoot apices than in the vegetative ones.Nt RCP1-overexpressing plants underwent a more rapid transition from the vegetative to the reproductive phase and flowered markedly earlier than the wild-type control.Histological analysis revealed that the shoot apical meristem of Nt RCP1-overexpressing plants initiated inflorescence primordia precociously compared to the wild-type plant due to accelerated cell division.Overexpression of Nt RCP1 in BY-2 suspension cells promoted cell division,which was a consequence of the shortened G2 phase in the cell cycle.Together,our data suggest that Nt RCP1 may act as a regulator of the phase transition,possibly through its role in cell cycle regulation,during vegetative/reproductive development in tobacco plant.  相似文献   

19.
Cytokinin addition to tobacco cell suspensions induced synchronous cell division after an 18 h lag period. Although continuous presence of the cytokinin in the culture medium during this lag period was essential to division, cytokinin was not required during mitosis itself. For each cell generation, cytokinin-dependent events are thus completed before mitosis occurs.Two experiments suggested that these cytokinin-dependent events are independent of DNA synthesis:
1. (i) With or without cytokinin, DNA synthesis proceeded normally in the presence of auxin, for at least the time required for one cell generation in complete medium.
2. (ii) In the presence of cytokinin, when DNA synthesis in the lag period was inhibited by FUdR, one normal cell division occurred when cytokinin was withdrawn and DNA synthesis restored by thymidine addition.
In cytokinin-starved cells, metaphase was greatly prolonged although prophase was unaffected.  相似文献   

20.
Auxin induction of cell cycle regulated activity of tobacco telomerase.   总被引:5,自引:0,他引:5  
Telomerase activity was measured at each phase of the cell cycle in synchronized tobacco (Nicotiana tabacum) BY-2 cells in suspension culture with the use of the telomeric repeat amplification protocol assay. The activity was low or undetectable at most phases of the cell cycle but showed a marked increase at early S phase. The induction of telomerase activity was not affected by the S phase blockers aphidicolin (which inhibits DNA polymerase alpha) or hydroxyurea (which inhibits ribonucleotide reductase), but it was prevented by olomoucine, an inhibitor of Cdc2/Cdk2 kinases that blocks G(1)-S cell cycle transition. These results suggest that the induction of telomerase activity is not directly coupled to DNA replication by conventional DNA polymerases, but rather is triggered by the entry of cells into S phase. Various analogs of the plant hormone auxin, including indole-3-acetic acid, alpha-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, potentiated the increase in telomerase activity at early S phase; the growth-inactive analog 2,3-dichlorophenoxyacetic acid, however, had no such effect. Potentiation by indole-3-acetic acid of the induction of telomerase activity was dose dependent. Together, these data indicate that telomerase activity in tobacco cells is regulated in a cell cycle-dependent manner, and that the increase in activity at S phase is specifically inducible by auxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号