首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitric oxide (NO) is a mediator of copious biological processes, in many cases through the production of cGMP from the enzyme nitric oxide-sensitive guanylyl cyclase. Natriuretic peptides also elevate cGMP, often with distinct biological effects, raising the issue of how specificity is achieved. Here we show that a recently described alpha(2)beta(1) isoform of guanylyl cyclase is expressed in a number of epithelia, where it is localized to the apical plasma membrane. We measured the functional properties of the alpha(2)beta(1) isoform by utilizing the NO-dependent activation of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR), which occurs by phosphorylation via the membrane-bound type II isoform of cGMP-dependent protein kinase. We found that cGMP generated by NO activation of the alpha(2)beta(1) isoform of guanylyl cyclase is an exceptionally efficient mediator of nitric oxide action on membrane targets, activating CFTR far more effectively than the cytoplasmically located alpha(1)beta(1) guanylyl cyclase isoform. Targeting the alpha(1)beta(1) isoform of guanylyl cyclase to the membrane also dramatically enhanced the effects of nitric oxide on CFTR within the membrane. This was not due to increased enzymatic activity of guanylyl cyclase in a membrane location, but to production of a localised membrane pool of cGMP by membrane-localized NO-dependent guanylyl cyclase that was resistant to degradation by phosphodiesterases. Selective effects of cGMP produced from this enzyme in response to NO are directed at membrane targets and suggest that drugs selectively activating or inhibiting this alpha(2)beta(1) isoform of guanylyl cyclase may have unique pharmacological properties.  相似文献   

2.
Conventional soluble guanylyl cyclases are heterodimeric enzymes that synthesize cGMP and are activated by nitric oxide. Recently, a separate class of soluble guanylyl cyclases has been identified that are only slightly activated by or are insensitive to nitric oxide. These atypical guanylyl cyclases include the vertebrate beta2 subunit and examples from the invertebrates Manduca sexta, Caenorhabditis elegans, and Drosophila melanogaster. A member of this family, GCY-35 in C. elegans, was recently shown to be required for a behavioral response to low oxygen levels and may be directly regulated by oxygen (Gray, J. M., Karow, D. S., Lu, H., Chang, A. J., Chang, J. S., Ellis, R. E., Marletta, M. A., and Bargmann, C. I. (2004) Nature 430, 317-322). Drosophila contains three genes that code for atypical soluble guanylyl cyclases: Gyc-88E, Gyc-89Da, and Gyc-89Db. COS-7 cells co-transfected with Gyc-88E and Gyc-89Da or Gyc-89Db accumulate low levels of cGMP under normal atmospheric oxygen concentrations and are potently activated under anoxic conditions. The increase in activity is graded over oxygen concentrations of 0-21%, can be detected within 1 min of exposure to anoxic conditions and is blocked by the soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline-1-one (ODQ). Gyc-88E and Gyc-89Db are co-expressed in a subset of sensory neurons where they would be ideally situated to act as oxygen sensors. This is the first demonstration of a soluble guanylyl cyclase that is activated in response to changing oxygen concentrations.  相似文献   

3.
Guanylyl cyclases catalyze the formation of cGMP from GTP, but display extensive identity at the catalytic domain primary amino acid level with the adenylyl cyclases. The recent solving of the crystal structures of soluble forms of adenylyl cyclase has resulted in predictions of those amino acids important for substrate specificity. Modeling of a membrane-bound homodimeric guanylyl cyclase predicted the comparable amino acids that would interact with the guanine ring. Based on these structural data, the replacement of three key residues in the heterodimeric form of soluble guanylyl cyclase has led to a complete conversion in substrate specificity. Furthermore, the mutant enzyme remained fully sensitive to sodium nitroprusside, a nitric oxide donor.  相似文献   

4.
Adenosine 3′, 5′-cyclic monophosphate (cAMP) and guanosine 3′, 5′-cyclic monophosphate (cGMP) are well-studied second messengers that transmit extracellular signals into mammalian cells, with conserved functions in various other species such as Caenorhabditis elegans (C. elegans). cAMP is generated by adenylyl cyclases, and cGMP is generated by guanylyl cyclases, respectively. Studies using C. elegans have revealed additional roles for cGMP signaling in lifespan extension. For example, mutants lacking the function of a specific receptor-bound guanylyl cyclase, DAF-11, have an increased life expectancy. While the daf-11 phenotype has been attributed to reductions in intracellular cGMP concentrations, the actual content of cyclic nucleotides has not been biochemically determined in this system. Similar assumptions were made in studies using phosphodiesterase loss-of-function mutants or using adenylyl cyclase overexpressing mutants. In the present study, cyclic nucleotide regulation in C. elegans was studied by establishing a special nematode protocol for the simultaneous detection and quantitation of cyclic nucleotides. We also examined the influence of reactive oxygen species (ROS) on cyclic nucleotide metabolism and lifespan in C. elegans using highly specific HPLC-coupled tandem mass-spectrometry and behavioral assays. Here, we show that the relation between cGMP and survival is more complex than previously appreciated.  相似文献   

5.
The intracellular messenger cGMP (cyclic guanosine monophosphate) has been suggested to play a role in olfactory transduction in both invertebrates and vertebrates, but its cellular location within the olfactory system has remained elusive. We used cGMP immunocytochemistry to determine which antennal cells of the hawkmoth Manduca sexta are cGMP immunoreactive in the absence of pheromone. We then tested which antennal cells increase cGMP levels in response to nitric oxide (NO) and to long pheromonal stimuli, which the male encounters close to a calling female moth. In addition, we used in situ hybridization to determine which antennal cells express NO-sensitive soluble guanylyl cyclase. In response to long pheromonal stimuli with NO donors present, cGMP concentrations change in at least a subpopulation of pheromone-sensitive olfactory receptor neurons. These changes in cGMP concentrations in pheromone-dependent olfactory receptor neurons cannot be mimicked by the addition of NO donors in the absence of pheromone. NO stimulates sensilla chaetica type I and II, but not pheromone-sensitive trichoid sensilla, to high levels of cGMP accumulation as detected by immunocytochemistry. In situ hybridizations show that sensilla chaetica, but not sensilla trichodea, express detectable levels of mRNA coding for soluble guanylyl cyclase. These results suggest that intracellular rises in cGMP concentrations play a role in information processing in a subpopulation of pheromone-sensitive sensilla in Manduca sexta antennae, mediated by an NO-sensitive mechanism, but not an NO-dependent soluble guanylyl cyclase.  相似文献   

6.
We investigated the effects of endothelins (ETs) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ET-3 increased cGMP formation in a concentration-dependent manner (EC50 = 98nM), which was 2.5 times higher than that of ET-1. The ET(B)receptor agonists sarafotoxin-S6c and IRL 1620 also increased cGMP production, mimicking the effects of the ETs. The ET(B) receptor antagonist BQ 788, but not the ET(A) receptor antagonist BQ610, dose-dependently blocked ET-3-stimulated cGMP formation (IC50=10nM). The phorbol ester, Phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylyl cyclase in smooth muscle, dose-dependently inhibited ET-3-stimulated cGMP accumulation (IC50=66nM). LY83583 and ODQ, inhibitors of soluble guanylyl cyclases, as well as inhibitors of the nitric oxide cascade and of intracellular Ca2+ elevation had no appreciable effect on ET-3-induced cGMP production. ET-3 markedly inhibited carbachol-induced intracellular Ca2+ mobilization. We conclude that ET-3 increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ET(B) receptor subtype and subsequent stimulation of the membrane-bound guanylyl cyclase. Elevation of cGMP by ET and the subsequent inhibition of muscarinic stimulation of intracellular Ca2+ mobilization by the cyclic nucleotide could serve to modulate the contractile effects of Ca2+-mobilizing agonists in the iris sphincter smooth muscle.  相似文献   

7.
We previously reported that pre- and postsynaptic 5-hydroxytryptamine (5-HT) receptors effectively control glutamatergic transmission in adult rat cerebellum. To investigate where 5-HT acts in the glutamate ionotropic receptors/nitric oxide/guanosine 3',5'-cyclic monophosphate (cGMP) pathway, in the present study 5-HT modulation of the cGMP response to the nitric oxide donor S-nitroso-penicillamine (SNAP) was studied in adult rat cerebellar slices. While cGMP elevation produced by high-micromolar SNAP was insensitive to 5-HT, 1 microM SNAP, expected to release nitric oxide in the low-nanomolar concentration range, elicited cGMP production and endogenous glutamate release both of which could be prevented by activating presynaptic 5-HT1D receptors. Released nitric oxide appeared responsible for cGMP production and glutamate release evoked by 1 microM SNAP, as both the effects were mimicked by the structurally unrelated nitric oxide donor 2-(N,N-diethylamino)-diazenolate-2-oxide (0.1 microM). Dependency of the 1 microM SNAP-evoked release of glutamate on external Ca2+, sensitivity to presynaptic release-regulating receptors and dependency on ionotropic glutamate receptor functioning, suggest that nitric oxide stimulates exocytotic-like, activity-dependent glutamate release. Activation of ionotropic glutamate receptors/nitric oxide synthase/guanylyl cyclase pathway by endogenously released glutamate was involved in the cGMP response to 1 microM SNAP, as blockade of NMDA/non-NMDA receptors, nitric oxide synthase or guanylyl cyclase, abolished the cGMP response. To conclude, in adult rat cerebellar slices low-nanomolar exogenous nitric oxide could facilitate glutamate exocytotic-like release possibly from parallel fibers that subsequently activated the glutamate ionotropic receptors/nitric oxide/cGMP pathway. Presynaptic 5-HT1D receptors could regulate the nitric oxide-evoked release of glutamate and subsequent cGMP production.  相似文献   

8.
NO., CO and .OH. Endogenous soluble guanylyl cyclase-activating factors.   总被引:17,自引:0,他引:17  
H H Schmidt 《FEBS letters》1992,307(1):102-107
Several low molecular weight compounds are capable of activating soluble guanylyl cyclase. Recent evidence suggests that some of these are formed under physiological conditions: the nitric oxide radical, carbon monoxide and the hydroxyl radical. Thus, multiple signal transduction pathways appear to exist that form a family of guanylyl cyclase activating factors and thereby regulate the intracellular cyclic guanosine 3',5'-monophosphate level.  相似文献   

9.
Cyclic nucleotide-gated (CNG) channels are a family of ion channels activated by the binding of cyclic nucleotides. Endogenous channels have been used to measure cyclic nucleotide signals in photoreceptor outer segments and olfactory cilia for decades. Here we have investigated the subcellular localization of cGMP signals by monitoring CNG channel activity in response to agonists that activate either particulate or soluble guanylyl cyclase. CNG channels were heterologously expressed in either human embryonic kidney (HEK)-293 cells that stably overexpress a particulate guanylyl cyclase (HEK-NPRA cells), or cultured vascular smooth muscle cells (VSMCs). Atrial natriuretic peptide (ANP) was used to activate the particulate guanylyl cyclase and the nitric oxide donor S-nitroso-n-acetylpenicillamine (SNAP) was used to activate the soluble guanylyl cyclase. CNG channel activity was monitored by measuring Ca2+ or Mn2+ influx through the channels using the fluorescent dye, fura-2. We found that in HEK-NPRA cells, ANP-induced increases in cGMP levels activated CNG channels in a dose-dependent manner (0.05-10 nM), whereas SNAP (0.01-100 microM) induced increases in cGMP levels triggered little or no activation of CNG channels (P < 0.01). After pretreatment with 100 microM 3-isobutyl-1-methylxanthine (IBMX), a nonspecific phosphodiesterase inhibitor, ANP-induced Mn2+ influx through CNG channels was significantly enhanced, while SNAP-induced Mn2+ influx remained small. In contrast, we found that in the presence of IBMX, both 1 nM ANP and 100 microM SNAP triggered similar increases in total cGMP levels. We next sought to determine if cGMP signals are compartmentalized in VSMCs, which endogenously express particulate and soluble guanylyl cyclase. We found that 10 nM ANP induced activation of CNG channels more readily than 100 muM SNAP; whereas 100 microM SNAP triggered higher levels of total cellular cGMP accumulation. These results suggest that cGMP signals are spatially segregated within cells, and that the functional compartmentalization of cGMP signals may underlie the unique actions of ANP and nitric oxide.  相似文献   

10.
Adenylyl cyclases are widely distributed across all kingdoms whereas guanylyl cyclases are generally thought to be restricted to eukaryotes. Here we report that the α-proteobacterium Rhodospirillum centenum secretes cGMP when developing cysts and that a guanylyl cyclase deletion strain fails to synthesize cGMP and is defective in cyst formation. The R. centenum cyclase was purified and shown to effectively synthesize cGMP from GTP in vitro, demonstrating that it is a functional guanylyl cyclase. A homologue of the Escherichia coli cAMP receptor protein (CRP) is linked to the guanylyl cyclase and when deleted is deficient in cyst development. Isothermal calorimetry (ITC) and differential scanning fluorimetry (DSF) analyses demonstrate that the recombinant CRP homologue preferentially binds to, and is stabilized by cGMP, but not cAMP. This study thus provides evidence that cGMP has a crucial role in regulating prokaryotic development. The involvement of cGMP in regulating bacterial development has broader implications as several plant-interacting bacteria contain a similar cyclase coupled by the observation that Azospirillum brasilense also synthesizes cGMP when inducing cysts.  相似文献   

11.
Using in vivo voltammetry to directly measure extracellular nitric oxide (NO) levels, our previous studies suggested that the neuronal NO synthase (nNOS) and cyclic guanosine monophosphate (cGMP) signal transducing systems are involved in the cardiovascular responses elicited by activation of N-methyl-D-aspartate (NMDA) receptors in the rostral ventrolateral medulla. In this study, we examined if the depressor responses elicited by activation of NMDA receptors in the caudal ventrolateral medulla (CVLM) also depend on the actions of nNOS and soluble guanylyl cyclase. In anesthetized cats, microinjection of NMDA into the CVLM produced hypotension and bradycardia associated with NO formation. These NMDA-induced responses were attenuated by prior injections of 2-amino-5-phosphonopentanoate (a NMDA receptor competitive antagonist), 7-nitroindazole (a nNOS inhibitor) and 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (an inhibitor of soluble guanylyl cyclase). These findings suggest that NO is also involved in the NMDA-induced depressor responses of the CVLM.  相似文献   

12.
A guanylyl cyclase has been recently identified in Arabidopsis but, despite the use of pharmacological inhibitors to infer roles of the second messenger 3',5'-cyclic guanosine monophosphate (cGMP), very few measurements of actual cGMP levels in plants are available. Here, we demonstrate that cGMP levels in Arabidopsis seedlings increase rapidly (< or =5 s) and to different degrees after salt and osmotic stress, and that the increases are prevented by treatment with LY, an inhibitor of soluble guanylyl cyclases. In addition, we provide evidence to suggest that salt stress activates two cGMP signalling pathways - an osmotic, calcium-independent pathway and an ionic, calcium-dependent pathway.  相似文献   

13.
While there is evidence of nitric oxide (NO)-dependent signalling via the second messenger cyclic guanosine 3',5'-monophosphate (cGMP) in plants, guanylate cyclases (GCs), enzymes that catalyse the formation of cGMP from guanosine 5'-triphosphate (GTP) have until recently remained elusive and none of the candidates identified to-date are NO-dependent. Using both a GC and heme-binding domain specific (H-NOX) search motif, we have identified an Arabidopsis flavin monooxygenase (At1g62580) and shown electrochemically that it binds NO, has a higher affinity for NO than for O(2) and that this molecule can generate cGMP from GTP in vitro in an NO-dependent manner.  相似文献   

14.
15.
Studying the structure and regulation of soluble guanylyl cyclase   总被引:4,自引:0,他引:4  
Soluble guanylyl cyclase acts as the receptor for the signaling molecule nitric oxide. The enzyme consists of two different subunits. Each subunit shows the cyclase catalytic domain, which is also conserved in the membrane-bound guanylyl cyclases and the adenylyl cyclases. The N-terminal regions of the subunits are responsible for binding of the prosthetic heme group of the enzyme, which is required for the stimulatory effect of nitric oxide (NO). The five-coordinated ferrous heme displays a histidine as the axial ligand; activation of soluble guanylyl cyclase by NO is initiated by binding of NO to the heme iron and proceeds via breaking of the histidine-to-iron bond. Recently, a novel pharmacological and possibly physiological principle of guanylyl cyclase sensitization was demonstrated. The substance YC-1 has been shown to activate the enzyme independent of NO, to potentiate the effect of submaximally effective NO concentrations, and to turn carbon monoxide into an effective activator of soluble guanylyl cyclase.  相似文献   

16.
Two classes of guanylyl cyclases (GC) form intracellular cGMP. One is a receptor for atrial natriuretic peptide (ANP) and the other for nitric oxide (NO). The ANP receptor guanylyl cyclase (GC-A) is a membrane-bound, single subunit protein. Nitric oxide activated or soluble guanylyl cyclases (NOGC) are heme-containing heterodimers. These have been shown to be important in cGMP mediated regulation of arterial vascular resistance and renal sodium transport. Recent studies have shown that cGMP produced by both GCs is compartmentalized in the heart and vascular smooth muscle cells. To date, however, how intracellular cGMP generated by ANP and NO is compartmentalized and how it triggers specific downstream targets in kidney cells has not been investigated. Our studies show that intracellular cGMP formed by NO is targeted to cytosolic and cytoskeletal compartments whereas cGMP formed by ANP is restricted to nuclear and membrane compartments. We used two dimensional difference in gel electrophoresis and MALDI-TOF/TOF to identify distinct sub-cellular targets that are specific to ANP and NO signaling in HK-2 cells. A nucleocytoplasmic shuttling protein, heterogeneous nuclear ribonucleo protein A1 (hnRNP A1) is preferentially phosphorylated by ANP/cGMP/cGK signaling. ANP stimulation of HK-2 cells leads to increased cGK activity in the nucleus and translocation of cGK and hnRNP A1 to the nucleus. Phosphodiestaerase-5 (PDE-5 inhibitor) sildenafil augmented ANP-mediated effects on hnRNPA1 phosphorylation, translocation to nucleus and nuclear cGK activity. Our results suggest that cGMP generated by ANP and SNAP is differentially compartmentalized, localized but not global changes in cGMP, perhaps at different sub-cellular fractions of the cell, may more closely correlate with their effects by preferential phosphorylation of cellular targets.  相似文献   

17.
Guanylyl cyclase (GC) plays a central role in the responses of vertebrate rod and cone photoreceptors to light. cGMP is an internal messenger molecule of vertebrate phototransduction. Light stimulates hydrolysis of cGMP, causing the closure of cGMP-dependent cation channels in the plasma membranes of photoreceptor outer segments. Light also lowers the concentration of intracellular free Ca(2+) and by doing so it stimulates resynthesis of cGMP by guanylyl cyclase. The guanylyl cyclases that couple Ca(2+) to cGMP synthesis in photoreceptors are members of a family of transmembrane guanylyl cyclases that includes atrial natriuretic peptide receptors and the heat-stable enterotoxin receptor. The photoreceptor membrane guanylyl cyclases, RetGC-1 and RetGC-2 (also referred to as GC-E and GC-F), are regulated intracellularly by two Ca(2+)-binding proteins, GCAP-1 and GCAP-2. GCAPs bind Ca(2+) at three functional EF-hand structures. Several lines of biochemical evidence suggest that guanylyl cyclase activator proteins (GCAPs) bind constitutively to an intracellular domain of RetGCs. In the absence of Ca(2+) GCAP stimulates and in the presence of Ca(2+) it inhibits cyclase activity. Proper functioning of RetGC and GCAP is necessary not only for normal photoresponses but also for photoreceptor viability since mutations in RetGC and in GCAP cause photoreceptor degeneration.  相似文献   

18.
Evidence is presented that nitric oxide (NO) may regulate blood pressure in cephalopod molluscs. In vitro tests performed on the cephalic aorta of Sepia officinalis (L.) (Cephalopoda) showed that the NO releasers (glyceroltrinitrate, sodium nitroprusside, 3-morpholinylsydnoneimine chloride and KNO(2)) induced concentration-dependent vasodilatation of vessel segments (without the tunica adventitia/periadventitia) precontracted by dopamine. These vasodilatatory actions could be totally blocked by oxadiazolo[4,3-a] quinoxalin-1-one, an inhibitor of the NO-sensitive guanylyl cyclase, and partially mimicked by the cyclic guanosine monophosphate (cGMP) analogue 8-bromo cGMP and by the phosphodiesterase inhibitor, zaprinast. The NO-precursor, L-arginine, showed vasodilatatory effects only on segments of the aorta in which the layers containing nerves (tunica adventitia/periadventitia) had been left intact, suggesting that NO synthase may be located within peripheral nerves.  相似文献   

19.
Invertebrate model systems have a long history of generating new insights into neuronal signaling systems. This review focuses on cyclic GMP signaling and describes recent advances in understanding the properties and functions of guanylyl cyclases in invertebrates. The sequencing of three invertebrate genomes has provided a complete catalog of the guanylyl cyclases in C. elegans, Drosophila, and the mosquito Anopheles gambiae. Using this data and that from cloned guanylyl cyclases in Manduca sexta, C. elegans, and Drosophila, plus predictions and models from vertebrate guanylyl cyclases, evidence is presented that there is a much broader array of properties for these enzymes than previously realized. In addition to the classic homodimeric receptor guanylyl cyclases, C. elegans has at least two receptor guanylyl cyclases that are predicted to require heterodimer formation for activity. Soluble guanylyl cyclases are generally recognized as being obligate heterodimers that are activated by nitric oxide (NO). Some of the soluble guanylyl cyclases in C. elegans may heterodimeric, but all appear to be insensitive to NO. The β2 soluble guanylyl cyclase subunit in mammals and similar ones in Manduca and Drosophila are active in the absence of additional subunits and there is evidence that Drosophila and Anopheles also express an additional subunit that enhances this activity.  相似文献   

20.
Enzyme immunosorbent assays were used to measure cyclic nucleotide concentrations in homogenates of salivary glands from partially fed female Dermacentor variabilis. The adenylyl cyclase activator forskolin (100 μM) increased homogenate cGMP concentrations greater than three-fold over controls. Competitive inhibition of nitric oxide synthase with 1 mM l-NMMA, an l-arginine analog, demonstrated that crosstalk occurs downstream of nitric oxide synthesis. Forskolin-stimulated synthesis of cGMP was diminished 58% by the soluble guanylyl cyclase inhibitor ODQ (2 μM). The protein kinase A selective inhibitor Rp-cAMPS (50 μM) inhibited forskolin-stimulated cGMP by 49%. Whole glands treated with 10 μM dopamine increased cGMP levels two-fold in the presence of 1 mM IBMX. Treatment of whole salivary glands with equimolar concentrations of 8-Br-cAMP and 8-Br-cGMP produced no greater fluid uptake than in glands treated with 8-Br-cGMP alone, suggesting that cAMP and cGMP share a downstream target. The protein kinase G-selective inhibitor Rp-8-pCPT-cGMPS (100 μM) impeded 10 mM 8-Bromo-cGMP-stimulated gland weight increases. Pretreatment with verapamil, a Ca2+ channel blocker, attenuated cyclic nucleotide-stimulated fluid uptake indicating that whole gland fluid changes are dependent on extracellular Ca2+. Together, our data suggest that cGMP production is mediated in part by cAMP-dependent activation of soluble guanylyl cyclase. Experiments measuring changes in whole salivary gland weight support the hypothesis that cAMP and cGMP signaling cascades have a common target and that cyclic nucleotide-stimulated fluid movement is dependent on Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号