首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
青藏高原高寒草甸生态系统碳增汇潜力   总被引:8,自引:2,他引:6  
为了揭示青藏高原高寒草甸生态系统植被变化对碳储量的影响,以原生矮嵩草草甸、退化草甸、人工草地以及农田为研究对象,对比分析了该4种不同土地格局下生态系统的有机碳现状.以原生矮嵩草草甸土壤碳储量为基准对不同类型高寒生态系统的碳增汇潜力进行了估算.结果表明:不同类型生态系统的碳储量和碳增汇潜力有很大差异,在0-40cm土层中,(1)原生草甸碳储量最高,达到17098 g C/m2,退化草甸、人工草地和农田的有机碳汇增加潜力分别为:5637、3823、1567 g C/m2.(2)对于退化草甸和人工草地,土壤有机碳含量和密度明显低于原生草甸和农田.(3)地下生物量碳储量主要集中在0-20cm,且原生草甸地下生物量的碳储量比其他3个植被类型高3.6-5倍.总体上,青藏高原草地生态系统存在巨大的碳增汇潜力.  相似文献   

2.
分析了青藏高原东缘高寒草甸不同施肥处理对土壤全量养分、速效养分、pH、含水量、有机碳和土壤脲酶活性的影响,以揭示高寒草甸土壤养分和酶活性对施肥的响应。结果表明:(1)随施肥量的增加,土壤pH明显趋于降低,施肥引起高寒草甸土壤酸化;全磷、速效磷均显著增大;(2)土壤全氮、有机碳和脲酶活性随施肥量增加呈单峰曲线变化,在施肥量为30或60g·m-2时最高,施肥量增加到90g·m-2时土壤资源逐渐降低;(3)季节变化对土壤养分也有一定的影响,全氮和全磷含量均于9月份较高,而速效氮含量一般于9月份较低,而速效磷含量5月份较低;(4)施肥对土壤养分的影响并不是简单的线性正相关关系,30~60g·m-2施肥量可作为高寒草甸最佳施肥水平。施肥处理下土壤有机碳和脲酶活性可作为衡量土壤肥力和土壤质量变化的重要指标。高施肥量(≥90g·m-2)可作为影响高寒草甸土壤养分及土壤酶活性的阈值。  相似文献   

3.
生物多样性与生态系统功能的关系及其机制是生态学领域的重大科学问题. 人们越来越关注环境因子对多样性-生产力关系的影响. 植物群落组成、物种丰富度、物种特征、生物量的分布结构和植物枯枝落叶对高寒草甸物种多样性和生产力有着重要的影响. 因此, 我们利用2001~2004年中国科学院海北生态系统定位站高寒草甸群落的实测资料, 研究了不同环境梯度(土壤含水量和营养)下, 植物群落生物量, 物种丰富度及组成的变化. 结果表明, 植物群落物种组成的不同反应在生物量的分布上, 以藏嵩草为优势种的藏嵩草沼泽化草甸群落总生物量(地上、地下)最高(13196.96±719.69 g/m2), 次之是以杂类草和莎草科为主的小嵩草草甸(2869.58±147.52 g/m2), 以禾本科和杂类草为主的矮嵩草草甸最低(2153.08±141.95 g/m2). 藏嵩草沼泽化草甸中, 草本植物枯枝落叶显著高于小嵩草、矮嵩草草甸, 土壤含水量对草本植物枯枝落叶有较大的影响. 不同类型草甸群落中, 地上生物量与土壤有机质、全氮和群落盖度之间均呈显著正相关(P < 0.05); 藏嵩草沼泽化草甸中, 总生物量与物种丰富度呈负相关(rs = -0.907, P < 0.05)、地下生物量与土壤含水量呈正相关(rs = -0.900, P < 0.05); 而在小嵩草和矮嵩草草甸中它们之间均没有达到显著水平, 说明不同类型高寒草甸群落生产力除受物种多样性、功能群内物种密度和均匀度的影响, 同时也受物种本身特征和外部环境资源的影响. 不同类型草甸群落生物量的分布与土壤含水量和土壤养分的变化相一致.  相似文献   

4.
高寒草甸不同植被土壤微生物数量及微生物生物量的特征   总被引:10,自引:1,他引:9  
用稀释平板法和氯仿熏蒸法研究了藏嵩草草甸、小嵩草草甸、矮嵩草草甸、禾草草甸、杂类草草甸及金露梅灌丛土壤的微生物数量、生物量及有机质的变化特征.结果表明:0~40 cm土层细菌和放线菌数量、微生物生物量碳和土壤有机质含量均以藏嵩草草甸最高,其微生物生物量及土壤有机质显著高于其它5种植被;真菌数量以金露梅灌丛最高;由表层到深层,随着土壤深度的增加以上各项指标均呈下降趋势.通径分析表明:土壤各生物环境因子之间存在着不同程度的相关性;土壤微生物数量、生物量及土壤有机质含量均与土壤水分含量存在显著的相关关系,说明土壤水分是调节高寒草甸生态系统土壤微生物代谢及物质转化的关键因子.  相似文献   

5.
青海湖流域矮嵩草草甸土壤有机碳密度分布特征   总被引:5,自引:1,他引:4  
通过对青海湖流域不同退化程度矮嵩草草甸土壤容重和有机碳含量的测定,确定了其土壤有机碳密度。结果表明:不同退化程度下矮嵩草草甸土壤有机碳含量和变化特征各有不同。从未退化-重度退化,0—100 cm土壤剖面平均有机碳含量分别为(25.17±4.73)g/kg,(17.51±3.06)g/kg,(20.79±1.30)g/kg和(14.53±1.20)g/kg,即未退化中度退化轻度退化重度退化;0—20 cm土壤平均有机碳含量从(64.47±11.70)g/kg减少为(14.52±1.52)g/kg,减少了77.48%。土壤剖面有机碳密度变化趋势与其有机碳含量变化趋势一致。0—100 cm土壤剖面有机碳密度分别为(18.16±4.12)kg/m3,(14.24±3.52)kg/m3,(18.64±2.82)kg/m3和(13.27±2.28)kg/m3,即中度退化未退化轻度退化重度退化;土壤有机碳集中分布在0—40 cm深度,从未退化到严重退化,该深度有机碳密度分别为(32.06±6.41)kg/m3,(25.10±4.20)kg/m3,(22.68±3.17)kg/m3和(17.10±2.77)kg/m3,比整个剖面有机碳密度高出76.53%,76.25%,21.68%和28.88%。不考虑其他因素,以空间尺度代替时间尺度,这一结果说明矮嵩草草甸的退化导致土壤逐渐释放有机碳,其作为储存碳的功能在减弱,必须加强对矮嵩草草甸生态系统的保护,以防止其碳库变为碳源。  相似文献   

6.
基于2006—2015年青海海北站10年生物量及气候因子监测数据,分析了青藏高原高寒矮嵩草草甸生物量的季节及年际动态,并探讨了气候因子对其影响。结果表明:(1)季节尺度上,高寒矮嵩草草甸地上生物量表现为单峰变化曲线,8月为其峰值点,为(345.72±27.01)g/m2,代表了高寒草甸的地上净初级生产力。而地下根系的现存量变化较为复杂,其中5—7月呈现持续上升趋势,8月快速下降,之后9月份急剧,且各月份之间未达到显著水平(P0.05);年际尺度上,10年间高寒矮嵩草草甸地上生物量整体呈现波动增加趋势,2014年为其峰值点,达(437.12±32.01)g/m2。地下生物量呈现波动性变化,变异较大,10年间平均值为(2566.99±138.11)g/m2;(2)高寒草甸光合产物分配主要分布在地下,80%地下根系生物量分布于地表0—10 cm土层,且不同土层根系生物量占总地下生物量的比值在不同月份较为稳定。(3)气候因子中,大气相对湿度是影响高寒草甸地上生物量大小的主要因素;而气候因子对地下根系生物量的影响极为微弱。研究表明,高寒嵩草草甸对环境变化具有较高的自我调节能力,且高寒草甸的演化受制于人类干扰,而非气候变化。  相似文献   

7.
基于2006—2015年青海海北站10年生物量及气候因子监测数据,分析了青藏高原高寒矮嵩草草甸生物量的季节及年际动态,并探讨了气候因子对其影响。结果表明:(1)季节尺度上,高寒矮嵩草草甸地上生物量表现为单峰变化曲线,8月为其峰值点,为(345.72±27.01)g/m2,代表了高寒草甸的地上净初级生产力。而地下根系的现存量变化较为复杂,其中5—7月呈现持续上升趋势,8月快速下降,之后9月份急剧,且各月份之间未达到显著水平(P0.05);年际尺度上,10年间高寒矮嵩草草甸地上生物量整体呈现波动增加趋势,2014年为其峰值点,达(437.12±32.01)g/m2。地下生物量呈现波动性变化,变异较大,10年间平均值为(2566.99±138.11)g/m2;(2)高寒草甸光合产物分配主要分布在地下,80%地下根系生物量分布于地表0—10 cm土层,且不同土层根系生物量占总地下生物量的比值在不同月份较为稳定。(3)气候因子中,大气相对湿度是影响高寒草甸地上生物量大小的主要因素;而气候因子对地下根系生物量的影响极为微弱。研究表明,高寒嵩草草甸对环境变化具有较高的自我调节能力,且高寒草甸的演化受制于人类干扰,而非气候变化。  相似文献   

8.
人类活动对青藏高原高寒矮嵩草草甸碳过程的影响   总被引:2,自引:0,他引:2  
随着人类活动干扰(放牧)的增加,青藏高原高寒嵩草甸的退化演替过程依次为禾草-矮嵩草群落、矮嵩草群落、小嵩草群落和杂类草-黑土滩4个阶。其中小嵩草群落又可划分为草毡表层加厚、开裂与塌陷3个子阶段。采用时空转换的方法,研究了人类活动对青藏高原高寒矮嵩草草甸碳过程的影响。结果表明,随着人类干扰强度的增加,植物群落地上部分有机碳储量逐渐降低,由禾草-矮嵩草群落的(134.7±17.3)gC/m2逐渐降低到杂类草-黑土滩次生裸地(18.96±6.18)gC·m-2。土壤、植物地下部分有机碳贮量呈单峰曲线变化,草毡表层开裂子阶段最高,分别为(49.7±0.83)gC·kg-1和(3596.7±179.8)gC·m-2。;杂类草-黑土滩阶段最低,分别为(19.2±1.13)gC·kg-1和(121.6±6.1)gC·m-2。受植物地下部贮碳的影响,土壤-植被系统呈现逐渐降低的变化特征。随人类活动干扰的加强,高寒嵩草草地植物有机碳地下/地上分配比发生巨大改变,草地草毡表层厚度不高于4.3cm是保证草地生产与生态服功能双赢的重要指标。  相似文献   

9.
青海省海北州典型高寒草甸土壤质量评价   总被引:4,自引:0,他引:4  
以青海省海北州的典型高寒草甸(金露梅灌丛草甸、矮嵩草草甸、高山嵩草草甸)为研究对象,以7种土壤微生物活性指标和10种土壤理化性质指标组成的土壤生物肥力性质为评价指标,对不同利用方式下草甸的土壤质量进行主成分分析(PCA).结果表明:高寒草甸土壤综合质量可用3个主成分(PC)来表征,其中PC1上有13个指标的载荷较高,PC2上有3个指标的载荷较高, PC3上只有全磷的载荷较高.结合Norm值的方法,筛选出微生物生物量碳、脲酶、碱性磷酸酶、蛋白酶、有机碳、全氮、有效氮、有效磷、有效钾、容重和阳离子交换量(CEC)等11项指标,建立了海北高寒草甸土壤综合质量评价的最小数据集(MDS).通过主成分和对应的权重系数分析, 对3种草甸的土壤综合质量进行排序,0~10 cm层为矮嵩草草甸>金露梅灌丛>高山嵩草草甸;10~20 cm层为金露梅灌丛>高山嵩草草甸>矮嵩草草甸.  相似文献   

10.
基于2006—2015年青海海北站10年生物量及气候因子监测数据,分析了青藏高原高寒矮嵩草草甸生物量的季节及年际动态,并探讨了气候因子对其影响。结果表明:(1)季节尺度上,高寒矮嵩草草甸地上生物量表现为单峰变化曲线,8月为其峰值点,为(345.72±27.01) g/m~2,代表了高寒草甸的地上净初级生产力。而地下根系的现存量变化较为复杂,其中5—7月呈现持续上升趋势,8月快速下降,之后9月份急剧,且各月份之间未达到显著水平(P0.05);年际尺度上,10年间高寒矮嵩草草甸地上生物量整体呈现波动增加趋势,2014年为其峰值点,达(437.12±32.01) g/m~2。地下生物量呈现波动性变化,变异较大,10年间平均值为(2566.99±138.11) g/m~2;(2)高寒草甸光合产物分配主要分布在地下,80%地下根系生物量分布于地表0—10 cm土层,且不同土层根系生物量占总地下生物量的比值在不同月份较为稳定。(3)气候因子中,大气相对湿度是影响高寒草甸地上生物量大小的主要因素;而气候因子对地下根系生物量的影响极为微弱。研究表明,高寒嵩草草甸对环境变化具有较高的自我调节能力,且高寒草甸的演化受制于人类干扰,而非气候变化。  相似文献   

11.
土壤碳库构成研究进展   总被引:40,自引:5,他引:35  
余健  房莉  卞正富  汪青  俞元春 《生态学报》2014,34(17):4829-4838
土壤碳库是陆地生态系统中最大的碳库。土壤碳库的构成影响其累积和分解,并直接影响全球陆地生态系统碳平衡,同时也影响土壤质量变化。弄清土壤碳库的组分及构成,是进一步研究土壤碳库变化机制的关键。综述了土壤碳库的组分和构成,对有机碳库进行不稳定性有机碳库和稳定有机碳库归类,描述各类碳库的性质,并对各类碳库的分析测定方法进行了评述。提出在土壤碳构成中增加黑碳和煤炭(碳)以完善土壤有机碳构成框架。在未来研究中,应加强土壤无机碳及湿地土壤和新开发新复垦的重构土壤碳库构成及变化,各类碳库化学构成,交叉重叠的定量关系,碳库之间的转化及在土壤中的迁移,黑碳对土壤碳库稳定性及土壤质量的影响,煤开采扰动区煤炭(碳)对土壤质量的影响及环境效应等科学问题的研究。  相似文献   

12.
在高纬度高海拔区域气温增幅更大的背景下,高山亚高山森林土壤有机碳稳定性组分分配比关系以及由于此差异导致对增温的反馈效应均有待深入阐释。天山森林是以雪岭云杉(Picea Schrenkiana)为单优树种的温带针叶林,在天山北坡中山带(海拔约1760—2800 m)呈垂直落差超过1000 m的带状斑块分布,便于排除混交树种的影响,而量化土壤有机碳库稳定性组分分配比关系沿海拔的分异规律,及其对气候变化的响应情况。沿海拔梯度设置森林样地并分层采集土样,研究各土层土壤总有机碳库(CSOC)、活性碳库(Ca)、缓效性碳库(Cs)、惰性碳库(Cp)、微生物量碳(MBC)在海拔梯度上的变化特征,通过碳库活度(A)、碳库活度指数(AI)、碳库指数(CPI)、土壤碳密度(SOCD),探讨天山森林土壤有机碳稳定性组分沿海拔的分异特征。结果表明:(1)随着海拔的升高,天山中段北坡云杉森林土壤Ca占比逐步升高,Cs和Cp占比逐步降低,这意味着天山中段北坡云杉...  相似文献   

13.
葡萄园生态系统是农业生态系统的重要组成部分, 集中连片栽培的葡萄园具有重要的生态价值。开展葡萄园生态系统碳源/汇的研究, 是完整探讨葡萄园生态系统碳循环必不可少的内容。随着葡萄生态学研究的进一步深入, 如何直观地揭示葡萄园生态系统碳循环规律和碳汇功能已经成为葡萄生态学领域关注的热点问题。研究发现, 葡萄园生态系统固定大量碳, 将碳封存在葡萄果实等一年生器官、主干等多年生器官以及土壤碳库中。葡萄园生态系统碳输入量大于碳输出量, 是碳汇; 土壤是葡萄园生态系统最大的碳库, 占总碳储量的70%, 尤其是土藤界面; 覆盖和免耕作为葡萄园的碳减排策略, 可以减少碳排放, 提高葡萄园土壤肥力。基于此, 为了阐明葡萄园生态系统的碳汇价值, 该文围绕葡萄生态学最新研究进展, 系统回顾了葡萄园生态系统中碳循环规律、碳汇研究进展及碳减排策略, 为葡萄生态学的研究提供理论基础, 并对本领域未来的研究方向和应用前景进行展望。  相似文献   

14.
土壤有机碳分组方法及其在农田生态系统研究中的应用   总被引:20,自引:2,他引:18  
Zhang G  Cao ZP  Hu CJ 《应用生态学报》2011,22(7):1921-1930
农田土壤有机碳成分复杂,活性有机碳对管理措施具有敏感性,而惰性有机碳具有固碳作用.碳分组技术主要包括物理技术、化学技术和生物学技术.物理分组的依据是密度、粒径大小和空间分布,可分离出有机碳的活性组分和惰性组分.化学分组基于土壤有机碳在各种提取剂中的溶解性、水解性和化学反应性从而分离出各种组分:溶解性有机碳是生物可代谢有机碳,包括有机酸、酚类和糖类等;酸水解方法可将有机碳分成活性和惰性成分;利用KMnO4模拟酶氧化可分离出活性碳和非活性碳.利用生物技术可测定出微生物生物量碳和潜在可矿化碳.在不同农田管理措施下,有机碳组分的化学组成和库容会发生不同变化,对土壤有机碳沉积速率产生不同影响.为了探明土壤有机碳组分与碳沉积之间的定性或定量关系,今后应该加强对各种分组方法的标准化研究,探索不同分组方法的整合应用,针对不同农田管理措施,总结出适合的有机碳分组方法或联合分组方法.  相似文献   

15.
能源对北京市城市碳循环的影响   总被引:1,自引:0,他引:1  
邱莎  曹飞飞  唐明方  邓红兵 《生态学报》2019,39(18):6816-6825
研究城市碳循环过程并阐明能源对碳循环的影响,可为城市节能减排政策的制定和实施提供参考依据。基于城市碳循环模型核算了2005—2014年北京市的碳储量和碳通量,并通过能源碳效应指数来探讨能源对城市碳循环的影响。结果表明人为碳储量是北京市总碳储量增加的主要驱动力。北京市的碳输入主要来自水平方向,表明北京市的发展在很大程度上依赖于外部环境的物质供给;北京市的碳输出主要是能源消耗产生的垂直碳输出。能源活动相关的碳通量占北京市总碳通量的比重,即能源碳效应,在2006年高达79.46%,而后开始呈波动下降的趋势。能源对北京市碳循环影响最大的是垂直输出方向,其次是水平输入方向,因此低碳城市建设需要加强对垂直碳通量和水平碳通量的调节和管理,尤其是与能源活动相关的碳通量,与此同时,保护自然植被和增加生态用地对提高城市碳减排能力也至关重要。  相似文献   

16.
赵海凤  闫昱霖  张大红 《生态学报》2015,35(4):1249-1257
首先对"低碳经济"进行了讨论,进而提出了"碳循环经济"概念;对现有碳计量进行研究,提出了相应改进计算公式:碳绩效和碳经济密度。最后,对碳责任分担进行了探讨,提出了发达国家和发展中国家"责任共担、区别对待"的碳责任担负的计算模式。  相似文献   

17.
Biomass and carbon storage of the North American deciduous forest   总被引:1,自引:0,他引:1  
Field measures of tree and shrub dimensions were used with established biomass equations in a stratified, two-stage cluster sampling design to estimate above-ground ovendry woody biomass and carbon storage of the eastern deciduous forest of North America. Biomass averaged 8.1 ± 1.4 (95% C.I.) kg/m2 and totaled 18.1 ± 3.1 (95% C.I.) gigatons. Carbon storage averaged 3.6 ± 0.6 (95% C.I.) kg/m2 and totaled 8.1 ± 1.4 (95% C.I.) gigatons. These values are lower than previous estimates commonly used in the analysis of the global carbon budget which range from 17.1 to 23.1 kg/m2 for biomass and 7.7 to 10.4 kg/m2 for carbon storage. These new estimates for the deciduous forest, together with earlier work in the boreal forest begin to reveal a pattern of overestimation of global carbon storage by vegetation in analyses of the global carbon budget. We discuss reasons for the differences between the new and earlier estimates, as well as implications for our understanding of the global carbon cycle.  相似文献   

18.
19.
采用室内土壤培养法,比较分析了湖南省会同地区常绿阔叶林、杉木纯林土壤有机碳的矿化速率和累计矿化量,分析了有机碳矿化量与土壤活性有机碳初始含量的关系。结果表明:常绿阔叶林土壤有机碳矿化速率和累计矿化量均显著高于杉木纯林。在培养的第21天,在培养温度为9℃和28℃条件下,常绿阔叶林0~10和10~20cm土层的土壤有机碳累计矿化量为杉木纯林的1.7~2.7倍。常绿阔叶林土壤有机碳矿化释放的CO2-C分配比例高于杉木纯林。林地土壤有机碳矿化量受土壤微生物碳、可溶性有机碳初始含量的影响(P<0.01)。土壤有机碳矿化使土壤微生物碳增加而可溶性有机碳下降,但变化幅度均不大。温度从9℃升高到28℃后,林地土壤有机碳矿化速率提高3.1~4.5倍;2林地有机碳矿化对温度的敏感性无显著差异。  相似文献   

20.
周健  肖荣波  庄长伟  邓一荣 《生态学报》2013,33(18):5865-5873
城市森林及其管理相关政策作为减少CO2排放的有效策略得到了较为广泛的关注。采用材积源生物量方程与净初级生产力方法来定量分析了广州市城市森林碳储量和碳固定量,根据化石能源使用量及其碳排放因子核算了广州城市能源碳排放,最后评估了城市森林碳抵消效果。结果显示广州市城市森林碳储量为654.42×104t,平均碳密度为28.81 t/hm2,而森林碳固定量为658732 t/a,平均固碳率为2.90 t·hm-2·a-1。2005-2010年广州市年均能源碳排放则达到2907.41×104t。广州城市森林碳储量约为城市年均能源碳排放的22.51%,其通过碳固定年均能够抵消年均碳排放的2.27%,不过从城市森林综合效益来看其仍是城市低碳发展重要举措之一。分析了林型组成和林龄结构对于广州森林碳储量和碳固定量的影响,并从森林管理角度为城市森林碳汇提升提出建议。这些结果和讨论有助于评估城市森林碳汇在抵消碳排放中所起的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号