首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Chicken is recognized as an excellent model for studies of genetic mechanism of phenotypic and genomic evolution, with large effective population size and strong human-driven selection. In the present study, we performed Extended Haplotype Homozygosity (EHH) tests to identify significant core regions employing 600K SNP Chicken chip in an F2 population of 1,534 hens, which was derived from reciprocal crosses between White Leghorn and Dongxiang chicken. Results indicated that a total of 49,151 core regions with an average length of 9.79 Kb were identified, which occupied approximately 52.15% of genome across all autosomes, and 806 significant core regions attracted us mostly. Genes in candidate regions may experience positive selection and were considered to have possible influence on beneficial economic traits. A panel of genes including AASDHPPT, GDPD5, PAR3, SOX6, GPC1 and a signal pathway of AKT1 were detected with the most extreme P-values. Further enrichment analyses indicated that these genes were associated with immune function, sensory organ development and neurogenesis, and may have experienced positive selection in chicken. Moreover, some of core regions exactly overlapped with genes excavated in our previous GWAS, suggesting that these genes have undergone positive selection may affect egg production. Findings in our study could draw a comparatively integrate genome-wide map of selection signature in the chicken genome, and would be worthy for explicating the genetic mechanisms of phenotypic diversity in poultry breeding.  相似文献   

2.
Microbial diversity--insights from population genetics   总被引:1,自引:0,他引:1  
Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, Ne, is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 103 and 107 suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what Ne of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.  相似文献   

3.
Malaria has been one of the strongest selective pressures on our species. Many of the best-characterized cases of adaptive evolution in humans are in genes tied to malaria resistance. However, the complex evolutionary patterns at these genes are poorly captured by standard scans for nonneutral evolution. Here, we present three new statistical tests for selection based on population genetic patterns that are observed more than once among key malaria resistance loci. We assess these tests using forward-time evolutionary simulations and apply them to global whole-genome sequencing data from humans, and thus we show that they are effective at distinguishing selection from neutrality. Each test captures a distinct evolutionary pattern, here called Divergent Haplotypes, Repeated Shifts, and Arrested Sweeps, associated with a particular period of human prehistory. We clarify the selective signatures at known malaria-relevant genes and identify additional genes showing similar adaptive evolutionary patterns. Among our top outliers, we see a particular enrichment for genes involved in erythropoiesis and for genes previously associated with malaria resistance, consistent with a major role for malaria in shaping these patterns of genetic diversity. Polymorphisms at these genes are likely to impact resistance to malaria infection and contribute to ongoing host–parasite coevolutionary dynamics.  相似文献   

4.
Previous studies of immunity in wild populations have focused primarily on genes of the major histocompatibility complex (MHC); however, studies of model species have identified additional immune-related genes that also affect fitness. In this study, we sequenced five non-MHC immune genes in six greater prairie-chicken (Tympanuchus cupido) populations that have experienced varying degrees of genetic drift as a consequence of population bottlenecks and fragmentation. We compared patterns of geographic variation at the immune genes with six neutral microsatellite markers to investigate the relative effects of selection and genetic drift. Global F(ST) outlier tests identified positive selection on just one of five immune genes (IAP-1) in one population. In contrast, at other immune genes, standardized G'(ST) values were lower than those at microsatellites for a majority of pairwise population comparisons, consistent with balancing selection or with species-wide positive or purifying selection resulting in similar haplotype frequencies across populations. The effects of genetic drift were also evident as summary statistics (e.g., Tajima's D) did not differ from neutrality for the majority of cases, and immune gene diversity (number of haplotypes per gene) was correlated positively with population size. In summary, we found that both genetic drift and selection shaped variation at the five immune genes, and the strength and type of selection varied among genes. Our results caution that neutral forces, such as drift, can make it difficult to detect current selection on genes.  相似文献   

5.
Skin pigmentation,biogeographical ancestry and admixture mapping   总被引:23,自引:0,他引:23  
Ancestry informative markers (AIMs) are genetic loci showing alleles with large frequency differences between populations. AIMs can be used to estimate biogeographical ancestry at the level of the population, subgroup (e.g. cases and controls) and individual. Ancestry estimates at both the subgroup and individual level can be directly instructive regarding the genetics of the phenotypes that differ qualitatively or in frequency between populations. These estimates can provide a compelling foundation for the use of admixture mapping (AM) methods to identify the genes underlying these traits. We present details of a panel of 34 AIMs and demonstrate how such studies can proceed, by using skin pigmentation as a model phenotype. We have genotyped these markers in two population samples with primarily African ancestry, viz. African Americans from Washington D.C. and an African Caribbean sample from Britain, and in a sample of European Americans from Pennsylvania. In the two African population samples, we observed significant correlations between estimates of individual ancestry and skin pigmentation as measured by reflectometry (R(2)=0.21, P<0.0001 for the African-American sample and R(2)=0.16, P<0.0001 for the British African-Caribbean sample). These correlations confirm the validity of the ancestry estimates and also indicate the high level of population structure related to admixture, a level that characterizes these populations and that is detectable by using other tests to identify genetic structure. We have also applied two methods of admixture mapping to test for the effects of three candidate genes (TYR, OCA2, MC1R) on pigmentation. We show that TYR and OCA2 have measurable effects on skin pigmentation differences between the west African and west European parental populations. This work indicates that it is possible to estimate the individual ancestry of a person based on DNA analysis with a reasonable number of well-defined genetic markers. The implications and applications of ancestry estimates in biomedical research are discussed.  相似文献   

6.
目的:冠心病(Coronary Heart Disease,CHD)是一种由多因素(遗传因素、环境因素以及它们之间的相互作用)引起的复杂疾病。本文从遗传因素和分子互作模式识别新的冠心病易感基因。方法:结合冠心病群体遗传SNPs数据和PPI数据,通过群体遗传数据的风险评估、功能SNPs的判定和PPI网络基因的分类,以功能SNPs属性、网络拓扑属性和基因功能属性为特征,利用两步分类的方法筛选新的冠心病易感基因。结果:获得了69个新的冠心病易感基因,其中43个被文献证实与冠心病的发生发展密切相关,且识别的新的易感基因注释的KEGG通路中有很多是已知的易感基因所没有注释到的,如MAPK signaling pathway,Calcium signaling pathway,Focal adhesion和Chemokine signaling pathway等,其中Chemokine signaling pathway被证实是CHD发展的关键通路。结论:应用本文提出的整合筛选策略,能识别与冠心病相关的新的易感基因,可为冠心病的预防、诊断和治疗提供新的研究方向。  相似文献   

7.
To identify genes that modulate Rho signalling during cytokinesis we tested the effect of overexpressing a set of 2190 genes on an eye phenotype caused by defective Rho activation. The resulting 112 modifier loci fell into three main classes: cell cycle genes, signalling effectors and metabolic enzymes. We developed a further series of genetic tests to refine the interactors into those most likely to modify Rho signalling during cytokinesis. In addition to a number of genes previously implicated in the Rho pathway during cytokinesis, we identified four novel primary candidates: cdc14, Pitslre, PDK1 and thread/diap1. cdc14 orthologs have, however, been implicated in cytokinesis in other organisms, as have molecules related to Thread/Diap1. The identification of several modifiers that are genetically redundant paralogs highlights the ability of overexpression screens to identify genes that are refractory to traditional loss-of-function approaches. Overexpression screens and sensitized phenotypes, therefore, may help identify the many factors that are expected to be involved in cytokinesis but have not been discovered by previous genetic screens.  相似文献   

8.
A novel phenotyping strategy in schizophrenia, targeting different neurocognitive domains, neurobehavioral features, and selected personality traits, has allowed us to identify a homogeneous familial subtype of the disease, characterized by pervasive neurocognitive deficit. Our genome scan data indicate that this subtype, which accounts for up to 50% of our sample, has a distinct genetic basis and explains linkage to chromosome 6p24 reported previously. If representative of other populations, the ratio of schizophrenia subtypes observed in our families could have a profound impact on sample heterogeneity and on the power of genetic studies to detect linkage and association. Our proposed abbreviated battery of tests should facilitate phenotype characterization for future genetic analyses and allow a focus on a crisply defined schizophrenia subtype, thus promoting a more informed search for susceptibility genes.  相似文献   

9.
Adaptation in response to selection on polygenic phenotypes may occur via subtle allele frequencies shifts at many loci. Current population genomic techniques are not well posed to identify such signals. In the past decade, detailed knowledge about the specific loci underlying polygenic traits has begun to emerge from genome-wide association studies (GWAS). Here we combine this knowledge from GWAS with robust population genetic modeling to identify traits that may have been influenced by local adaptation. We exploit the fact that GWAS provide an estimate of the additive effect size of many loci to estimate the mean additive genetic value for a given phenotype across many populations as simple weighted sums of allele frequencies. We use a general model of neutral genetic value drift for an arbitrary number of populations with an arbitrary relatedness structure. Based on this model, we develop methods for detecting unusually strong correlations between genetic values and specific environmental variables, as well as a generalization of comparisons to test for over-dispersion of genetic values among populations. Finally we lay out a framework to identify the individual populations or groups of populations that contribute to the signal of overdispersion. These tests have considerably greater power than their single locus equivalents due to the fact that they look for positive covariance between like effect alleles, and also significantly outperform methods that do not account for population structure. We apply our tests to the Human Genome Diversity Panel (HGDP) dataset using GWAS data for height, skin pigmentation, type 2 diabetes, body mass index, and two inflammatory bowel disease datasets. This analysis uncovers a number of putative signals of local adaptation, and we discuss the biological interpretation and caveats of these results.  相似文献   

10.
Understanding landscape processes driving patterns of population genetic differentiation and diversity has been a long‐standing focus of ecology and evolutionary biology. Gene flow may be reduced by historical, ecological or geographic factors, resulting in patterns of isolation by distance (IBD) or isolation by environment (IBE). Although IBE has been found in many natural systems, most studies investigating patterns of IBD and IBE in nature have used anonymous neutral genetic markers, precluding inference of selection mechanisms or identification of genes potentially under selection. Using landscape genomics, the simultaneous study of genomic and ecological landscapes, we investigated the processes driving population genetic patterns of White‐breasted Nuthatches (Sitta carolinensis) in sky islands (montane forest habitat islands) of the Madrean Archipelago. Using more than 4000 single nucleotide polymorphisms and multiple tests to investigate the relationship between genetic differentiation and geographic or ecological distance, we identified IBE, and a lack of IBD, among sky island populations of S. carolinensis. Using three tests to identify selection, we found 79 loci putatively under selection; of these, seven matched CDS regions in the Zebra Finch. The loci under selection were highly associated with climate extremes (maximum temperature of warmest month and minimum precipitation of driest month). These results provide evidence for IBE – disentangled from IBD – in sky island vertebrates and identify potential adaptive genetic variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号