首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
BACKGROUND AND AIMS: Sections leaves of Ficus rubiginosa 'Variegata' show that it is a chimera with a chlorophyll deficiency in the second layer of the leaf meristem (GWG structure). Like other Ficus species, it has a multiseriate epidermis on the adaxial and abaxial sides of the leaf, formed by periclinal cell divisions as well as anticlinal divisions. The upper and lower laminae of the leaf often exhibit small dark and light green patches of tissue overlying internal leaf tissue. METHODS: The distribution of chlorophyll in transverse sections of typical leaves was determined by fluorescence microscopy. KEY RESULTS: Patches of dark and light green tissue which arise in the otherwise colourless palisade and spongy mesophyll tissue in the entire leaf are due to further cell divisions arising from the bundle sheath which is associated with major vascular bundles or from the green multiseriate epidermis. Leaves produced in winter exhibit more patches of green tissue than leaves which expand in mid-summer. Many leaves produced in summer have no spotting and appear like a typical GWG chimera. There is a strong relationship between the number of patches on the adaxial side of leaves and the number on the abaxial side, showing that the cell division in upper and lower layers of leaves is strongly coordinated. In both winter and summer, there are fewer patches on the abaxial side of leaves compared with the adaxial side, indicating that periclinal and anticlinal cell divisions from the outer meristematic layer are less frequent in the lower layers of leaf tissue. Most of the patches are small (<1 mm in longest dimension) and thus the cell divisions which form them occur late in leaf development. Leaves which exhibit large patches generally have them on both sides of the leaves. CONCLUSION: In this cultivar, the outer meristematic layer appears to form vascular bundle sheaths and associated internal leaf tissue in the entire leaf lamina.  相似文献   

2.
McHale NA 《The Plant cell》1993,5(9):1029-1038
Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells.  相似文献   

3.
As part of the acclimation of the photosynthetic apparatus to high fluence rates of light, mesophyll (photosynthetic) leaf cells change in morphology (they elongate anticlinally or perpendicular to the leaf surface) and undergo extra cell divisions. This results in increased leaf thickness and internal, protective shading among chloroplasts. Here we have examined whether the chloroplasts themselves are sources of intracellular signals that trigger these changes, by monitoring the Arabidopsis thaliana chm1 variegated mutant, in which albino (chloroplast-defective) and green (with functional chloroplasts) sectors coexist in one leaf. Our results have uncovered two separable responses. The increase in mesophyll cell elongation was substantially reduced but still observable in albino sectors, indicating that chloroplasts contribute to the cell morphogenesis response, but a chloroplast-independent light sensory mechanism must exist. In contrast the change in number of mesophyll cell layers was completely abolished when plastids were dysfunctional, indicating that plastids are sole sources of signals for the cell division response. These data highlight the importance of plastid-derived signals in the cellular responses associated with photosynthetic acclimation.  相似文献   

4.
Vaughn KC 《Plant physiology》1987,84(1):188-196
Two immunological approaches were used to determine if ribulose bisphosphate carboxylase oxygenase (RuBisCo) is present in guard cell chloroplasts. Immunocytochemistry on thin plastic sections using tissue samples that were processed using traditional glutaraldehyde/osmium fixation and then restored to antigenicity with metaperiodate treatment, resulted in labeling over wild-type mesophyll and guard cell plastids of several green and white variegated Pelargonium chimeras. The density of immunogold labeling in guard cell chloroplasts was only about one-seventh of that noted in mesophyll chloroplasts on a square micron basis. Because guard cell chloroplasts are much smaller than mesophyll chloroplasts, and occur at lower quantities/cell, the relative differences in RuBisCo concentration between the cell types indicate that guard cells have only 0.48% of the RuBisCo of mesophyll cells. No reaction was noted over 70S ribosomeless plastids of these chimeras even though adjacent green chloroplasts were heavily stained, indicating the high specificity of the reaction for RuBisCo. Spurr's resin gave the most successful colloidal gold labeling in terms of low background staining and structural detail but L. R. White's resin appeared to be superior for antigen retention. In the white leaf edges of the white and green Pelargonium chimeras, the only green, functional chloroplasts are in the guard cells. When either whole tissue or plastid enriched extracts from this white tissue were electrophoresed, blotted, and probed with anti-RuBisCo a large subunit band was detected, identical to that in the green tissue. These data indicate that a low, but detectable, level of RuBisCo is present in guard cell chloroplasts.  相似文献   

5.
Using Agrobacterium tumefaciens harboring a vector that carriedthe rolC gene under the control of the 35S RNA promoter of cauliflowermosaic virus, we produced several transgenic plants. Two ofthem were periclinal chimeras with altered leaves that had wrinkleddark green margins and inner pale green regions. One chimericplant had shortened internodes, reduced apical dominance, smallflowers and exhibited male sterility, but the other had a normalphenotype. Analysis of proteins, RNA and DNA indicated thatthe inner pale green tissues consisted of transformed cellswhile the outer dark green tissues were composed of non-transformedcells. Histological analysis indicated that mesophyll cellswere distorted and larger intercellular spaces were presentin the transformed pale green regions. Furthermore, in youngleaves, transformed mesophyll cells were larger than non-transformedcells. However, the normal parts had larger numbers of cellsper unit area than the transformed parts. These observationssuggest that ths expression of 35S-rolC in leaves caused inhibitionof cell division in developing leaves and that the undulatingmargins, composed of non-transformed cells, were a consequenceof the requirement for accommodating more cells in less spacewithin the region of rolC-transformed cells. (Received January 29, 1993; Accepted May 17, 1993)  相似文献   

6.
Cell division during development of the dermal system of fruit of the grape cv. Gordo is confined to the first growth period. The epidermis is conserved with anticlinal proliferative cell divisions providing for increase in cell number. The hypodermis is the layer of origin of the collenchymatous dermal system. Six or seven layers are differentiated by periclinal cell divisions early in the first growth period, and later increase in size is obtained by proliferative anticlinal cell divisions. These observations are related to developmental and genetic control of fruit shape and volume.  相似文献   

7.
Differentiation of plant cells is regulated by position-dependent mechanisms rather than lineage. The maize Extra cell layers1 (Xcl1) mutation causes oblique, periclinal divisions to occur in the protoderm layer. These protodermal periclinal divisions occur at the expense of normal anticlinal divisions and cause the production of extra cell layers with epidermal characteristics, indicating that cells are differentiating according to lineage instead of position. Mutant kernels have several aleurone layers instead of one, indicating that Xcl1 alters cell division orientation in cells that divide predominantly in the anticlinal plane. Dosage analysis of Xcl1 reveals that the mutant phenotype is caused by overproduction of a normal gene product. This allows cells that have already received differentiation signals to continue to divide in aberrant planes and suggests that the timing of cell division determines differentiation. Cells that divide early and in the absence of differentiation signals use positional information, while cells that divide late after perceiving differentiation signals use lineage information instead of position.  相似文献   

8.
Leaf plastids of the Arabidopsis pale cress (pac) mutant do not develop beyond the initial stages of differentiation from proplastids or etioplasts and contain only low levels of chlorophylls and carotenoids. Early in development, the epidermis and mesophyll of pac leaves resemble those of wild-type plants. In later stages, mutant leaves have enlarged intercellular spaces, and the palisade layer of the mesophyll can no longer be distinguished. To study the molecular basis of this phenotype, we cloned PAC and determined that this gene is regulated by light and has the capacity to encode an acidic, predominantly alpha-helical protein. The PAC gene appears to be a novel component of a light-induced regulatory network that controls the development of leaves and chloroplasts.  相似文献   

9.
Six different homoplastidic periclinal chimeras of tobacco carrying the plastogene DP1 were selected after somatic segregation in heteroplastidic seedlings. Direct observation of the plane of division in epidermal cells of young leaves, and the number and size of sub-epidermal green spots on leaves with the Green-White-White (G-W-W) pattern of variegation, indicated that the ratio of periclinal to anticlinal divisions in L-I during development of the lamina was 1:3100. The number of green and white seedlings obtained from the different chimeral branches indicated a similar frequency of periclinal divisions in development of the ovary. The arrangement of green and white tissue in mature leaves of the various chimeral types indicated the extent of participation by the three apical layers in the initiation of the buttress, development of the axis, and formation of the lamina. During development of the lamina there must be three independent initial-groups present. L-I and L-II initials remain marginal, but early in the growth of the lamina the leading edge of tissue derived from L-III becomes separated from the submarginal (L-II) initials by the products of frequent periclinal divisions of the L-II initials.  相似文献   

10.
3种龙葵表皮毛类型及发育过程观察研究   总被引:6,自引:0,他引:6  
通过观察发现龙葵(Solanum nigrum L.)、少花龙葵(S.photeinocarpum Nakam,etO-dshi)和黄果龙葵(S.nigum L.var.suaveolens G.L.Guo)的表皮毛均为腺毛,主要有单细胞头腺毛和多细胞头腺毛2种。腺毛的原始细胞都来源于原表皮细胞,经2次平周分裂产生基细胞、柄细胞和顶端细胞、在腺毛后期的形态发生中,柄细胞和顶细胞的分裂状态决定腺毛的  相似文献   

11.
DUCKETT  J. G.; TOTH  R. 《Annals of botany》1977,41(5):903-912
In the mature leaf cells of the periclinal chimera Ficus elasticaRoxb. forma variegata, which contain defective plastids, themitochondria occur as giant aggregations. Serial sectioningreveals that each of these comprises two individual memberstightly intertwined, recalling the mitochondrial nebenkern seenduring spermiogenesis in animals, but not hitherto reportedin higher plants. Varying from tubular mitochondria coiled togetherin a simple spiral to labyrinthine networks of two extensivelyramified organelles, the aggregates are smallest in the epidermalcells and largest in the mesophyll and lactifers. In contrast,chloroplast containing mesophyll and epidermal cells containpopulations of simple mitochondria. Those in the vascular parenchyma,from green parts of the leaves, are much branched but do notform bipartite aggregations. Whether aggregated or simple themitochondria have swollen saccate cristae. Osmiophilic granulesare frequent both in the matrix and within the cristae. Forany particular leaf cell type, mito chondrial volume is approximatelythe same irrespective of whether these contain a populationof simple organelles or just one or two aggregations. The reductionin the surface area of the mitochondria exposed to the cytoplasmin the latter configurations may perhaps compensate for a metabolicor structural deficiency. Since the aggregations only occurin cells containing defective plastids it could well be thatthe mutation affecting the latter also affects the former.  相似文献   

12.
The shoot apical meristem of Arabidopsis thaliana consists of three cell layers that proliferate to give rise to the aerial organs of the plant. By labeling cells in each layer using an Ac-based transposable element system, we mapped their contributions to the floral organs, as well as determined the degree of plasticity in this developmental process. We found that each cell layer proliferates to give rise to predictable derivatives: the L1 contributes to the epidermis, the stigma, part of the transmitting tract and the integument of the ovules, while the L2 and L3 contribute, to different degrees, to the mesophyll and other internal tissues. In order to test the roles of the floral homeotic genes in regulating these patterns of cell proliferation, we carried out similar clonal analyses in apetala3-3 and agamous-1 mutant plants. Our results suggest that cell division patterns are regulated differently at different stages of floral development. In early floral stages, the pattern of cell divisions is dependent on position in the floral meristem, and not on future organ identity. Later, during organogenesis, the layer contributions to the organs are controlled by the homeotic genes. We also show that AGAMOUS is required to maintain the layered structure of the meristem prior to organ initiation, as well as having a non-autonomous role in the regulation of the layer contributions to the petals.  相似文献   

13.
Inbred lines from different varieties of cultivated plants characterized by a white yellow irregular pattern on the leaves obtained after selection in the inbred generation (S3) of winter rye (Secale cereale L.) were the object of the present studies. The feature of a white yellow irregular pattern in all lines was monomeric and recessive. This trait in L158b, wch, and zp was determined by the same recessive gene marked with the symbol wyv1, "white yellow virescent." The gene responsible for the appearance of the above feature in line L24 was nonallelic to the gene wyv1, therefore it was designated as the sequent gene of the same series--wyv2. The studied forms of plants were characterized by a diminution in the number of plastids and in chlorophyll (a plus b) content in mesophyll cells of leaves. Contrary to typical ultrastructure of chloroplasts in dark green plants (control), plastids in lines with the white yellow virescent pattern on the leaves showed variations in ultrastructure from numerous granal and intergranal thylakoids to a reduced number.  相似文献   

14.
The primary root of Arabidopsis has a simple cellular organisation. The fixed radial cell pattern results from stereotypical cell divisions that occur in the meristem. Here we describe the characterisation of schizoriza (scz), a mutant with defective radial patterning. In scz mutants, the subepidermal layer (ground tissue) develops root hairs. Root hairs normally only form on epidermal cells of wild-type plants. Moreover, extra periclinal divisions (new wall parallel to surface of the root) occur in the scz root resulting in the formation of supernumerary layers in the ground tissue. Both scarecrow (scr) and short root (shr) suppress the extra periclinal divisions characteristic of scz mutant roots. This results in the formation of a single layered ground tissue in the double mutants. Cells of this layer develop root hairs, indicating that mis-specification of the ground tissue in scz mutants is uncoupled to the cell division defect. This suggests that during the development of the ground tissue SCZ has two distinct roles: (1) it acts as a suppressor of epidermal fate in the ground tissue, and (2) it is required to repress periclinal divisions in the meristem. It may act in the same pathway as SCR and SHR.  相似文献   

15.
Cell lineage analysis of maize bundle sheath and mesophyll cells   总被引:13,自引:0,他引:13  
Maize leaves are divided into repeated longitudinal units consisting of vascular tissue, bundle sheath (BS), and mesophyll (M) cells. We have carried out a cell lineage analysis of these cell types using six spontaneous striping mutants of maize. We show that certain cell division patterns are preferentially utilized, but not required, to form the characteristic arrangement of cell types. Our data suggest that early in development a central cell layer is formed, most frequently by periclinal divisions in the adaxial subepidermal layer of the leaf primordium. Lateral and intermediate veins are initiated in this central layer, most often by divisions which contribute daughter cells to both the procambium and the ground meristem. These divisions generate "half vein" units which comprise half of the bundle sheath cells around a vein and a single adjacent M cell. We show that intermediate veins are multiclonal both in this transverse direction and along their lengths. BS cells are more closely related to M cells in the middle layer of the leaf than to those in the upper and lower subepidermal layers. An examination of sector boundaries has shown that photosynthetic differentiation in M cells is affected by the phenotype of neighboring BS cells.  相似文献   

16.
R. Knoth 《Planta》1982,156(6):528-535
Protein crystalloids are typical constituents of Aeonium domesticum plastids. They are composed of hexagonally arranged tube-like elements situated in the stroma without a bordering membrane. The single tubule has an external diameter of about 20 nm and an internal one of about 10 nm. The green-white-green mesochimera Ae. domesticum cv. variegatum contains normal chloroplasts in the green tissue and colourless plastids in the pale tissue. The defective plastids have a double-layered envelope, scarce internal membrane structures and contain, in the mature stage, a large vacuole. Plastid ribosomes can be detected only rarely in proplastids. They lose their ribosome complement entirely in the course of development. Polyacrylamide gel electrophoresis of total nucleic acids extracted from white tissue revealed the absence of the 23S and 16S rRNA normally present in plastids. Despite the loss of ribosomes, the plastids contain large protein crystalloids, which are structurally identical with those of normal green chloroplasts. Consequences concerning problems of encoding and transport of crystalloid protein(s) are briefly discussed.Abbreviations CAM crassulacean acid metabolism - FIP fraction I protein - L I epidermis - L II subepidermal layer - L III leaf core - SPC succulent protein crystalloid This is the first part of a series on the crystalloid-forming succulent protein  相似文献   

17.
Leaves of Passerina are inversely ericoid. Adaxial epidermal cells are relatively small; abaxial ones are large and tanniniferous. Mucilaginous epidermal cells are usually present in many Thymelaeaceae, including Passerina , mainly in the abaxial epidermis. They are unequally divided by a periclinal wall-like septum into two separate compartments: (1) the outer, adjacent to the cuticle, containing mostly tanniniferous substances and (2) the inner, containing mucilage. This type of epidermis has often been incorrecdy described as uni-, bi- or multiseriate. Transmission electron microscopy revealed mucilage, characterized by microfibrils, embedded between die innermost wall-like septum and outermost layers of the inner periclinal cell wall. As accumulation of mucilage increases, the innermost (adjacent to the cell contents) layer of the original periclinal cell wall is pressed against the cytoplasm, thus forming a clearly demarcated cellulose periclinal wall which divides the epidermis cell into two compartments, the inner wiuh mucilage and the outer comprising the cell lumen. Existing controversy is critically discussed. Our observations confirm the authenticity of mucilagination in epidermal cell walls.  相似文献   

18.
Six species of the Cupressaceae, the variegated Leyland cypress (Cupressocyparis leylandii 'Silver Dust'), savin (Juniperus sabina variegata Laws), davurian juniper (Juniperus davurica 'expansa variegata'), California incense cedar (Calocedrus decurrens 'Aureovariegata'), the American arbor vitae (Thuja occidentalis 'lutae zebrina' Kent), and the sawara false cypress (Chamaecyparis pisifera 'nana aureovariegata') were examined for the behavior of albino-green shoot chimeras. The fate of the variegations in these six plants is the same in two important respects. First, the majority (89%) of sprays with an original sector become completely white. Second, sectorial branch sprays of the original sectorial sprays become either completely green or white in a 1?:?1 ratio. Based on the first finding it is concluded that there is one rather than the two to four apical initials in the shoot apex, as generally postulated. This single apical initial, actually an apical cell lineage, residing in the tunica layer can both form the leaf epidermis and by rare periclinal divisions form sectorial chimeras. The second finding is that there is no selection advantage of either type, a feature also postulated by others.  相似文献   

19.
TOMLINSON, P. B., TAKASO, T. & RATTENBURY, J. A., 1989. Cone and ovule ontogeny in Phyllocladus (Podocarpaceae). Cones are borne directly on phylloclades, usually in the position of basal segments or as segment appendages. Each cone consists of a series of spirally arranged bracts, of which the middle bracts each subtend a single, sessile ovule. There is no ovuliferous scale. Ovules arise as ovoid outgrowths; integument development involves periclinal divisions of hypodermal cells with the integument becoming bilobed and extended laterally. The mature ovule is flask-shaped. The integument includes an extensive middle region bounded by an inner and outer epidermis; the outer hypodermis is differentiated as two contrasted cell layers. An aril differentiates late by periclinal divisions of the outer hypodermal cells at the base of the ovule. The three outermost layers of the integument become differentiated in the mature seed as an epidermis, with thick, cutinized outer tangential walls, an outer hypodermal tanniniferous layer and a sclerotic inner layer. Each ovule is vascularized by two strands that diverge from the axial bundles delimiting the gap left by the departing bract trace.  相似文献   

20.
Summary Guard cells and epidermal cells of the abaxial (lower) and adaxial (upper) epidermis ofPisum sativum L., mutant Argenteum, are the predominant sites of flavonoid accumulation within the leaf. This was demonstrated by the use of a new method of simultaneous isolation and separation of intact, highly-purified guard cell and epidermal cell protoplasts from both epidermal layers and of protoplasts from the mesophyll. Isolated guard and epidermal protoplasts retained flavonoid patterns of the parent epidermal tissue; quercetin 3-triglucoside and its p-coumaric acid ester as major constituents, kaempferol 3-triglucoside and its p-coumaric acid ester as minor compounds. Total flavonoid content in the lower epidermis was estimated to be ca. 80 fmol per guard cell protoplast and 500 fmol per epidermal cell protoplast. Protoplasts isolated from the upper epidermis had about 20–30% as much of these flavonoids. Mesophyll protoplasts retained only about 25 fmol total flavonoid per protoplast.By fluorescence microscopy, using the alkaline-induced yellow-green fluorescence characteristics of flavonols, we suggest that these flavonol glycosides are present in cell vacuoles. There was no indication for the presence of flavine-like compounds.Abbreviations uE adaxial (upper) epidermis - IE abaxial (lower) epidermis - GCP guard cell protoplasts - ECP epidermal cell protoplasts - MCP mesophyll cell protoplasts - PP protoplasts - HPLC high performance liquid chromatography - TLC thin layer chromatography - CC column chromatography - HOAc acetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号