首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 320 毫秒
1.
Synaptosomal-associated protein 25 (SNAP25) is an essential component for synaptic vesicle mediated release of neurotransmitters. Deficiencies or abnormal structure or function of SNAP25 protein, possibly arising through genetic variations in the relevant DNA code, has been suggested to play role in the pathology of several neurobehavioural disorders including Attention deficit Hyperactivity Disorder (ADHD) and a number of polymorphisms in the SNAP25 gene has been studied for association with the disorder. In the present investigation, for the first time association between ADHD and six SNAP25 polymorphisms, rs1889189, rs362569, rs362988, rs3746544, rs1051312, and rs8636 was explored in eastern Indian population. Subjects were recruited following the Diagnostic and Statistical Manual for Mental Disorders-IV. Genomic DNA isolated from peripheral blood leukocytes of ADHD probands (n = 150), their parents (n = 272) and ethnically matched controls (n = 100) was used for amplifying target sites. Data obtained were subjected to population- as well as family-based analyses. While case–control analysis revealed lack of any significant difference for alleles, family-based studies revealed a mild over transmission rs3746544 ‘T’ and rs8636 ‘C’ alleles (P = 0.05 and 0.03 respectively). Haplotypes formed between rs362569 “T”, 362988 “G”, rs3746544 “T”, rs1051312 “T” and rs8636 “C” in different combinations showed statistically significant transmission to ADHD probands. Excepting rs3746544 and rs8636, all the tested sites showed very low linkage disequilibrium between them. Data obtained in this preliminary study indicates that rs3746544 ‘T’ allele may have some role in the disease etiology in the studied Indian population.  相似文献   

2.
Impulsivity is a personality trait of high impact and is connected with several types of maladaptive behavior and psychiatric diseases, such as attention deficit hyperactivity disorder, alcohol and drug abuse, as well as pathological gambling and mood disorders. Polymorphic variants of the SNAP-25 gene emerged as putative genetic components of impulsivity, as SNAP-25 protein plays an important role in the central nervous system, and its SNPs are associated with several psychiatric disorders. In this study we aimed to investigate if polymorphisms in the regulatory regions of the SNAP-25 gene are in association with normal variability of impulsivity. Genotypes and haplotypes of two polymorphisms in the promoter (rs6077690 and rs6039769) and two SNPs in the 3′ UTR (rs3746544 and rs1051312) of the SNAP-25 gene were determined in a healthy Hungarian population (N = 901) using PCR–RFLP or real-time PCR in combination with sequence specific probes. Significant association was found between the T–T 3′ UTR haplotype and impulsivity, whereas no association could be detected with genotypes or haplotypes of the promoter loci. According to sequence alignment, the polymorphisms in the 3′ UTR of the gene alter the binding site of microRNA-641, which was analyzed by luciferase reporter system. It was observed that haplotypes altering one or two nucleotides in the binding site of the seed region of microRNA-641 significantly increased the amount of generated protein in vitro. These findings support the role of polymorphic SNAP-25 variants both at psychogenetic and molecular biological levels.  相似文献   

3.
Epinephrine (E) and sympathetic nerve stimulation were described by Thomas Renton Elliott in 1905 for the first time. Dopamine (DA), norepinephrine (NE), E, and serotonin (5-HT) belong to the classic biogenic amines (or monoamines). Parkinson’s disease (PD) is among the diseases in which it has been established that catecholamines may account for the neurodegeneration of central and peripheral catecholamine neural systems. PD is a chronic and progressive neurological disorder characterized by resting tremor, rigidity, and bradykinesia, affecting 2% of individuals above the age of 65 years. This disorder is a result of degeneration of DA-producing neurons of the substantia nigra and a significant loss of noradrenergic neurons in the locus coeruleus. In PD and other related neurodegerative diseases, catecholamines play the role of endogenous neurotoxins. Catechol-O-methyltransferase (COMT) and/or monoamine oxidase (MAO) catalyze the metabolism of monoamines. However, the monoamine transporters for DA, NE, and 5-HT namely DAT, NET, and SERT, respectively regulate the monoamine concentration. The metabolism of catecholamines and 5-HT involves common factors. Monoamine transporters represent targets for many pharmacological agents that affect brain function, including psychostimulators and antidepressants. In PD, polymorphisms of the COMT, MAO, DAT, NET, and 5- HTT genes may change the levels of biogenic amines and their metabolic products. The currently available therapies for PD improve the symptoms but do not halt the progression of the disease. The most effective treatment for PD patients is therapy with L-dopa. Combined therapy for PD involves a DA agonist and decarboxylase, MAOs and COMT inhibitors, and is the current optimal form of PD treatment maintaining monoamine balance.  相似文献   

4.
Children with attention‐deficit/hyperactivity disorder (ADHD) usually display deficits in executive function (EF), which are primarily mediated by prefrontal cortex (PFC). The functional polymorphism of catechol‐O‐methyltransferase (COMT), Val158Met (rs4680), leads to observed polymorphic differences in the degradation of dopamine within PFC. This study aimed to explore the effect of rs4680 on EF using case–control design. In addition, considering the dynamic development of EF, we also attempted to investigate whether this genetic influence changes during development or not. A total of 597 ADHD children and 154 unaffected controls were recruited. The EF was evaluated using Rey–Osterrieth complex figure test (RCFT), trail making test (TMT) and Stroop color and word test for working memory, shifting and inhibition. Association between genotype and EF was analyzed using analysis of covariance (ancova ). The results showed significant interaction effect of genotype and ADHD diagnosis on RCFT performance (P < 0.001). However, the associated genotypes between ADHD and controls were divergent. In ADHD, the Met carriers performed better than the Val homozygotes on detail immediate [(10.38 ± 6.90) vs. (9.33 ± 6.92), P = 0.007] and detail delay [(9.96 ± 6.86) vs. (8.86 ± 6.89), P = 0.004], while Val homozygotes showed better performance compared with Met carrier controls [for detail immediate (14.55 ± 6.18) vs. (11.10 ± 6.45), P<0.001; for detail delay (14.31 ± 5.96) vs. (11.31 ± 6.96), P = 0.001]. We did not find significant interaction between genetic variant and development. COMT Val158Met (rs4680) may have divergent effect on working memory in ADHD children compared with healthy controls.  相似文献   

5.
Higher cognitive performance, maintenance of mental health and psychological well-being require adequate prefrontal cortex (PFC) function. “Inverted U-shaped” dopamine model indicates optimal PFC dopamine level is important to attain its function while high or low levels have adverse effects. Catechol-O-methyltransferase (COMT) and methylenetetrahydrofolate reductase (MTHFR) may be involved in this complex non-linear PFC dopamine regulation. We addressed whether genetic variation reflecting COMT and MTHFR activities can explain the inter-individual mental health differences in healthy Japanese men (n = 188). The mental health was measured by Mental Health Inventory (MHI)-5 score. The rs4633–rs4818–rs4680 haplotypes were used to represent the multilevel COMT activities, while for MTHFR, the functional single polymorphism, rs1801133 (C677T), was used. We examined the effectiveness of haplotype-based association analysis of COMT on mental health together with studying its interaction with MTHFR-C677T. As a result, the relation between activity-ranked COMT genotype and MHI-5 score showed a tendency to fit into an “inverted U-shaped” quadratic curve (P = 0.054). This curvilinear correlation was significant in the subjects with MTHFR-CC (P < 0.001), but not with MTHFR T-allele carriers (P = 0.793). Our pilot study implies a potential influence of COMT and MTHFR genotypic combination on normal variation of mental health.  相似文献   

6.
The adenosine A2A receptor (ADORA2A) is linked to the dopamine neurotransmitter system and is also implicated in the regulation of alertness, suggesting a potential association with attention‐deficit hyperactivity disorder (ADHD) traits. Furthermore, animal studies suggest that the ADORA2A may influence ADHD‐like behavior. For that reason, the ADORA2A gene emerges as a promising candidate for studying the etiology of ADHD traits. The aim of this study was to examine the relationship between ADORA2A gene polymorphisms and ADHD traits in a large population‐based sample. This study was based on the Child and Adolescent Twin Study in Sweden (CATSS), and included 1747 twins. Attention‐deficit hyperactivity disorder traits were assessed through parental reports, and samples of DNA were collected. Associations between six single nucleotide polymorphisms (SNPs) and ADHD traits were examined, and results suggested a nominal association between ADHD traits and three of these SNPs: rs3761422, rs5751876 and rs35320474. For one of the SNPs, rs35320474, results remained significant after correction for multiple comparisons. These results indicate the possibility that the ADORA2A gene may be involved in ADHD traits. However, more studies replicating the present results are warranted before this association can be confirmed .  相似文献   

7.
Maternal tea consumption was reported to increase the risk of fetal neural tube defects (NTDs). Catechol‐O‐methyltransferase (COMT) may be involved in the metabolism of polyphenolic methylation of tea, thus influence the risk of fetal NTDs. Methods: A total of 576 fetuses or newborns with NTDs and 594 healthy newborns were included in the case–control study. Information on maternal tea consumption, sociodemographic characteristics, reproductive history, and related behavior was collected through face‐to‐face interviews. Maternal blood samples were collected to examine polymorphisms in COMT, and the possible interaction of COMT and tea consumption was analyzed. RESULTS: After controlling for potential confounders, homozygotes of rs737865 showed an elevated risk for total NTDs (odds ratio [OR] = 2.04, 95% confidence interval [CI], 1.24–3.35) and for the anencephaly subtype (OR = 1.99, 95% CI, 1.17–3.39). The CC genotype of rs4633 was positively associated with the overall risk of NTDs (OR = 3.66, 95% CI, 1.05–12.83). Heterozygotes for rs4680 were associated with a decreased risk of spina bifida (OR = 0.71, 95% CI, 0.51–0.98). The COMT rs4680 A allele was negatively related with the risk of spina bifida, with adjusted OR = 0.64 (95% CI, 0.45–0.89). An interaction between tea consumption (1 to 2 cups/day) and the rs4680AA/AG genotype was found in the spina bifida subtype (Pinteraction = .08). Conclusion: Several COMT variants were associated with elevated risk of NTDs in a Chinese population. Maternal tea consumption may be associated with an increased risk for fetal NTDs in genetically susceptible subgroups. Birth Defects Research (Part A) 100:22–29, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Attention deficit hyperactivity disorder (ADHD) is a common behavioral disorder affecting children and adults. It has been suggested that gene variants related to serotonin neurotransmission are associated with ADHD. We tested the functional promoter polymorphism 5‐HTTLPR and seven single nucleotide polymorphisms in SLC6A4 for association with ADHD in 448 adult ADHD patients and 580 controls from Norway. Replication attempts were performed in a sample of 1454 Caucasian adult ADHD patients and 1302 controls from Germany, Spain, the Netherlands and USA, and a meta‐analysis was performed also including a previously published adult ADHD study. We found an association between ADHD and rs140700 [odds ratio (OR ) = 0.67; P = 0.01] and the short (S) allele of the 5‐HTTLPR (OR = 1.19; P = 0.06) in the Norwegian sample. Analysis of a possible gender effect suggested that the association might be restricted to females (rs140700: OR = 0.45; P = 0.00084). However, the meta‐analysis of 1894 cases and 1878 controls could not confirm the association for rs140700 [OR = 0.85, 95% confidence interval (CI) = 0.67–1.09; P = 0.20]. For 5‐HTTLPR, five of six samples showed a slight overrepresentation of the S allele in patients, but meta‐analysis refuted a strong effect (OR = 1.10, 95% CI = 1.00–1.21; P = 0.06). Neither marker showed any evidence of differential effects for ADHD subtype, gender or symptoms of depression/anxiety. In conclusion, our results do not support a major role for SLC6A4 common variants in persistent ADHD, although a modest effect of the 5‐HTTLPR and a role for rare variants cannot be excluded.  相似文献   

9.
The dopamine (DA), serotonin (5-HT), and norepinephrine (NE) transporter releasing activity and serotonin-2A (5-HT2A) receptor agonist activity of a series of substituted tryptamines are reported. Three compounds, 7b, (+)-7d and 7f, were found to be potent dual DA/5-HT releasers and were >10-fold less potent as NE releasers. Additionally, these compounds had different activity profiles at the 5-HT2A receptor. The unique combination of dual DA/5-HT releasing activity and 5-HT2A receptor activity suggests that these compounds could represent a new class of neurotransmitter releasers with therapeutic potential.  相似文献   

10.
The wide application of prostate-specific antigen (PSA) has contributed to the early diagnosis and improved management of prostate cancer (PCa). Accumulating evidence has suggested the involvement of genetic components in regulating serum PSA levels, and several single nucleotide polymorphisms (SNPs) have been identified by genome-wide association studies (GWASs). However, the GWASs' results have the limited power to identify the causal variants and pathways. After the quality control filters, a total of 330,540 genotyped SNPs from one GWAS with 657 PCa-free Caucasian males were included for the identify candidate causal SNPs and pathways (ICSNPathway) analysis. In addition, the genotype–phenotype association analysis has been conducted with the data from HapMap database. Overall, a total of four SNPs in three genes and six pathways were identified by ICSNPathway analysis, which in total provided three hypothetical mechanisms. First, CYP26B1 rs2241057 polymorphism (nonsynonymous coding) which leads to a Leu-to-Ser amino acid shift at position 264, was implicated in the pathways including meiosis, proximal/distal pattern formation, and M phase of meiotic cell cycle. Second, CLIC5 rs3734207 and rs11752816 polymorphisms (regulatory region) to the 2 iron, 2 sulfur cluster binding pathway through regulating expression levels of CLIC5 mRNA. Third, rs4819522 polymorphism (nonsynonymous coding) leads to a Thr-to-Met transition at position 350 of TBX1 and involves in the pathways about gland and endocrine system development. In summary, our results demonstrated four candidate SNPs in three genes (CYP26B1 rs2241057, CISD1 rs2251039, rs2590370, and TBX1 rs4819522 polymorphisms), which were involved in six potential pathways to influence serum PSA levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号