首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 124 毫秒
1.
Certain cyanobacteria thrive in natural habitats in which light intensities can reach 2000 micromol photon m(-2) s(-1) and nutrient levels are extremely low. Recently, a family of genes designated hli was demonstrated to be important for survival of cyanobacteria during exposure to high light. In this study we have identified members of the hli gene family in seven cyanobacterial genomes, including those of a marine cyanobacterium adapted to high-light growth in surface waters of the open ocean (Prochlorococcus sp. strain Med4), three marine cyanobacteria adapted to growth in moderate- or low-light (Prochlorococcus sp. strain MIT9313, Prochlorococcus marinus SS120, and Synechococcus WH8102), and three freshwater strains (the unicellular Synechocystis sp. strain PCC6803 and the filamentous species Nostoc punctiforme strain ATCC29133 and Anabaena sp. [Nostoc] strain PCC7120). The high-light-adapted Prochlorococcus Med4 has the smallest genome (1.7 Mb), yet it has more than twice as many hli genes as any of the other six cyanobacterial species, some of which appear to have arisen from recent duplication events. Based on cluster analysis, some groups of hli genes appear to be specific to either marine or freshwater cyanobacteria. This information is discussed with respect to the role of hli genes in the acclimation of cyanobacteria to high light, and the possible relationships among members of this diverse gene family.  相似文献   

2.
It is generally accepted that the plastids arose from a cyanobacterial ancestor, but the exact phylogenetic relationships between cyanobacteria and plastids are still controversial. Most studies based on partial 16S rRNA sequences suggested a relatively late origin of plastids within the cyanobacterial divergence. In order to clarify the exact relationship and divergence order of cyanobacteria and plastids, we studied their phylogeny on the basis of nearly complete 16S rRNA gene sequences. The data set comprised 15 strains of cyanobacteria from different morphological groups, 1 prochlorophyte, and plastids belonging to 8 species of plants and 12 species of diverse algae. This set included three cyanobacterial sequences determined in this study. This is the most comprehensive set of complete cyanobacterial and plastidial 16S rRNA sequences used so far. Phylogenetic trees were constructed using neighbor joining and maximum parsimony, and the reliability of the tree topologies was tested by different methods. Our results suggest an early origin of plastids within the cyanobacterial divergence, preceded only by the divergence of two cyanobacterial genera, Gloeobacter and Pseudanabaena.   相似文献   

3.
Novel CRISPR systems capable of cleaving both DNA and RNA are progressively emerging as attractive tools for genome manipulation of prokaryotic and eukaryotic organisms. We report specific characteristics of CRISPR systems present in Oxynema aestuarii AP17, a halotolerant, filamentous cyanobacterium and the second known member of the Oxynema genus. In-silico analyses of its whole-genome sequence revealed the presence of multiple Type I and Type III CRISPR loci with one Type I-G system previously unreported in cyanobacteria. We further identified the leader sequences at the 5′ end of multiple CRISPR loci, many of which were distinct from previously reported cyanobacterial CRISPR leaders. Phylogenetic analyses of the O. aestuarii AP17 Cas1 proteins revealed two protein sequences that were unique and distantly related to other cyanobacterial Cas1 protein sequences. Our findings are significant because novel Class 1 CRISPR systems possess multi-subunit effectors and are highly flexible for repurposing by protein domain fusions made to the effector complex. Additionally, Type III CRISPRs are particularly useful for genome editing in certain extremophiles for which mesophilic Type II CRISPRs are ineffective.  相似文献   

4.
Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N2) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N2 fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N2 fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits.  相似文献   

5.
Cyanobacteria are among the most important primary producers on the Earth. However, the evolutionary forces driving cyanobacterial species diversity remain largely enigmatic due to both their distinction from macro‐organisms and an undersampling of sequenced genomes. Thus, we present a new genome of a Synechococcus‐like cyanobacterium from a novel evolutionary lineage. Further, we analyse all existing 16S rRNA sequences and genomes of Synechococcus‐like cyanobacteria. Chronograms showed extremely polyphyletic relationships in Synechococcus, which has not been observed in any other cyanobacteria. Moreover, most Synechococcus lineages bifurcated after the Great Oxidation Event, including the most abundant marine picoplankton lineage. Quantification of horizontal gene transfer among 70 cyanobacterial genomes revealed significant differences among studied genomes. Horizontal gene transfer levels were not correlated with ecology, genome size or phenotype, but were correlated with the age of divergence. All findings were synthetized into a novel model of cyanobacterial evolution, characterized by serial convergence of the features, that is multicellularity and ecology.  相似文献   

6.
Currently, there are very little data available regarding the photosynthetic apparatus of red algae. We have analyzed the genes for Photosystem I in the recently sequenced genome of the red alga Galdieria sulphuraria. All subunits that are conserved between plants and cyanobacteria were unambiguously identified in the Galdieria genome: PsaA, PsaB, PsaC, PsaD, PsaE, PsaF, PsaI, PsaJ, PsaK and PsaL. From the plant specific subunits, PsaN and PsaO were identified but the sequence homology was much lower than for the subunits that are present in plants and cyanobacteria. The subunit PsaX, which is specific for thermophilic cyanobacteria, is not present in the Galdieria genome, whereas PsaM is a plastid-encoded protein as in other red algae. The sequences of the core subunits of PSI were further analyzed by mapping of the conserved areas in the crystal structures of cyanobacterial and plant PSI. The structural comparison shows that PSI from the red alga Galdieria may represent a common ancestral structure at the interface between cyanobacterial and plant PSI. Some subunits have a “zwitter” structure that contains structural elements that show similarities with either plant or cyanobacterial PSI. The structure of PsaL, which is responsible for the trimerization of PSI in cyanobacteria, lacks a short helix and the Ca2+ binding site, which are essential for trimer formation indicating that the Galdieria PSI is a monomer. However the sequence homology to plant PsaL is low and lacks strong conservation of the interaction sites with PsaH. Furthermore, the sites for interaction of plant PSI with the LHCI complex are not well conserved between plants and Galdieria, which may indicate that Galdieria may contain a PSI that is evolutionarily much more ancient than PSI from green algae, plants and the current cyanobacteria.  相似文献   

7.
Modern conical microbialites are similar to some ancient conical stromatolites, but growth, behavior and diversity of cyanobacteria in modern conical microbialites remain poorly characterized. Here, we analyze the diversity of cyanobacterial 16S rRNA gene sequences in conical microbialites from 14 ponds fed by four thermal sources in Yellowstone National Park and compare cyanobacterial activity in the tips of cones and in the surrounding topographic lows (mats), respectively, by high‐resolution mapping of labeled carbon. Cones and adjacent mats contain similar 16S rRNA gene sequences from genetically distinct clusters of filamentous, non‐heterocystous cyanobacteria from Subsection III and unicellular cyanobacteria from Subsection I. These sequences vary among different ponds and between two sampling years, suggesting that coniform mats through time and space contain a number of cyanobacteria capable of vertical aggregation, filamentous cyanobacteria incapable of initiating cone formation and unicellular cyanobacteria. Unicellular cyanobacteria are more diverse in topographic lows, where some of these organisms respond to nutrient pulses more rapidly than thin filamentous cyanobacteria. The densest active cyanobacteria are found below the upper 50 μm of the cone tip, whereas cyanobacterial cells in mats are less dense, and are more commonly degraded or encrusted by silica. These spatial differences in cellular activity and density within macroscopic coniform mats imply a strong role for diffusion limitation in the development and the persistence of the conical shape. Similar mechanisms may have controlled the growth, morphology and persistence of small coniform stromatolites in shallow, quiet environments throughout geologic history.  相似文献   

8.
We have studied the diversity of pelagic cyanobacteria in Lake Loosdrecht, The Netherlands, through recovery and analysis of small subunit ribosomal RNA gene sequences from lake samples and cyanobacterial isolates. We used an adapted protocol for specific amplification of cyanobacterial rDNA for denaturing gradient gel electrophoresis (DGGE) analysis. This protocol enabled direct comparison of cyanobacterial community profiles with overall bacterial profiles. The theoretical amplification specificity of the primers was supported by sequence analysis of DNA from excised DGGE bands. Sequences recovered from these bands, in addition to sequences obtained by polymerase chain reaction (PCR) and cloning from lake DNA as well as from cyanobacterial isolates from the lake, revealed a diverse consortium of cyanobacteria, among which are representatives of the genera Aphanizomenon, Planktothrix, Microcystis and Synechococcus. One numerically important and persistent cyanobacterium in the lake, Prochlorothrix hollandica, appeared to co-occur with an unknown but related species. However, the lake is dominated by filamentous species that originally have been termed 'Oscillatoria limnetica-like'. We show that this is a group of several related cyanobacteria, co-occurring in the lake, which belong to the Limnothrix/Pseudanabaena group. The available variation among the coexisting strains of this group can explain the persistent dominance of the group under severe viral pressure.  相似文献   

9.
Natural products are a functionally diverse class of biochemically synthesized compounds, which include antibiotics, toxins, and siderophores. In this paper, we describe both the detection of natural product activities and the sequence identification of gene fragments from two molecular systems that have previously been implicated in natural product production, i.e., nonribosomal peptide synthetases (NRPSs) and modular polyketide synthases (PKSs), in diverse marine and freshwater cyanobacterial cultures. Using degenerate PCR and the sequencing of cloned products, we show that NRPSs and PKSs are common among the cyanobacteria tested. Our molecular data, when combined with genomic searches of finished and progressing cyanobacterial genomes, demonstrate that not all cyanobacteria contain NRPS and PKS genes and that the filamentous and heterocystous cyanobacteria are the richest sources of these genes and the most likely sources of novel natural products within the phylum. In addition to validating the use of degenerate primers for the identification of PKS and NRPS genes in cyanobacteria, this study also defines numerous gene fragments that will be useful as probes for future studies of the synthesis of natural products in cyanobacteria. Phylogenetic analyses of the cyanobacterial NRPS and PKS fragments sequenced in this study, as well as those from the cyanobacterial genome projects, demonstrate that there is remarkable diversity and likely novelty of these genes within the cyanobacteria. These results underscore the potential variety of novel products being produced by these ubiquitous organisms.  相似文献   

10.
A PCR was developed for conserved regions within the cyanobacterial small subunit uptake hydrogenase (hupS) gene family. These primers were used to PCR amplify partial hupS sequences from 15 cyanobacterial strains. HupS clone libraries were constructed from PCR-amplified genomic DNA and reverse-transcribed mRNA extracted from phototrophic biofilms cultivated under nitrate-limiting conditions. Partial hupS gene sequences derived from cyanobacteria, some of which were not previously known to contain hup genes were used for phylogenetic analysis. Phylogenetic trees constructed with partial hupS genes were congruent with those based on 16S rRNA genes, indicating that hupS sequences can be used to identify cyanobacteria expressing hup. Sequences from heterocystous and nonheterocystous cyanobacteria formed two separate clusters. Analysis of clone library data showed a discrepancy between the presence and the activity of cyanobacterial hupS genes in phototrophic biofilms. The results showed that the hupS gene can be used to characterize the diversity of natural populations of diazotrophic cyanobacteria, and to characterize gene expression patterns of individual species and strains.  相似文献   

11.
《Genomics》2019,111(3):465-472
A filamentous cyanobacteria, Geitlerinema sp. FC II, was isolated from marine algae culture pond at Reliance Industries Limited (RIL), India. The 6.7 Mb draft genome of FC II encodes for 6697 protein coding genes. Analysis of the whole genome sequence revealed presence of nif gene cluster, supporting its capability to fix atmospheric nitrogen. FC II genome contains two variants of sulfide:quinone oxidoreductases (SQR), which is a crucial elector donor in cyanobacterial metabolic processes. FC II is characterized by the presence of multiple CRISPR- Cas (Clustered Regularly Interspaced Short Palindrome Repeats – CRISPR associated proteins) clusters, multiple variants of genes encoding photosystem reaction centres, biosynthetic gene clusters of alkane, polyketides and non-ribosomal peptides. Presence of these pathways will help FC II in gaining an ecological advantage over other strains for biomass production in large scale cultivation system. Hence, FC II may be used for production of biofuel and other industrially important metabolites.  相似文献   

12.
Phenylalanine ammonia lyase (PAL) catalyzes the deamination of phenylalanine to cinnamate and ammonia. While PALs are common in terrestrial plants where they catalyze the first committed step in the formation of phenylpropanoids, only a few prokaryotic PALs have been identified to date. Here we describe for the first time PALs from cyanobacteria, in particular, Anabaena variabilis ATCC 29413 and Nostoc punctiforme ATCC 29133, identified by screening the genome sequences of these organisms for members of the aromatic amino acid ammonia lyase family. Both PAL genes associate with secondary metabolite biosynthetic gene clusters as observed for other eubacterial PAL genes. In comparison to eukaryotic homologues, the cyanobacterial PALs are 20% smaller in size but share similar substrate selectivity and kinetic activity toward L-phenylalanine over L-tyrosine. Structure elucidation by protein X-ray crystallography confirmed that the two cyanobacterial PALs are similar in tertiary and quatenary structure to plant and yeast PALs as well as the mechanistically related histidine ammonia lyases.  相似文献   

13.
Genomics and chloroplast evolution: what did cyanobacteria do for plants?   总被引:3,自引:0,他引:3  
The complete genome sequences of cyanobacteria and of the higher plant Arabidopsis thaliana leave no doubt that the plant chloroplast originated, through endosymbiosis, from a cyanobacterium. But the genomic legacy of cyanobacterial ancestry extends far beyond the chloroplast itself, and persists in organisms that have lost chloroplasts completely.  相似文献   

14.
Cyanobacteria are among the most ancient of evolutionary lineages, oxygenic photosynthesizers that may have originated before 3.0 Ga, as evidenced by free oxygen levels. Throughout the Precambrian, cyanobacteria were one of the most important drivers of biological innovations, strongly impacting early Earth's environments. At the end of the Archean Eon, they were responsible for the rapid oxygenation of Earth's atmosphere during an episode referred to as the Great Oxidation Event (GOE). However, little is known about the origin and diversity of early cyanobacterial taxa, due to: (1) the scarceness of Precambrian fossil deposits; (2) limited characteristics for the identification of taxa; and (3) the poor preservation of ancient microfossils. Previous studies based on 16S rRNA have suggested that the origin of multicellularity within cyanobacteria might have been associated with the GOE. However, single‐gene analyses have limitations, particularly for deep branches. We reconstructed the evolutionary history of cyanobacteria using genome scale data and re‐evaluated the Precambrian fossil record to get more precise calibrations for a relaxed clock analysis. For the phylogenomic reconstructions, we identified 756 conserved gene sequences in 65 cyanobacterial taxa, of which eight genomes have been sequenced in this study. Character state reconstructions based on maximum likelihood and Bayesian phylogenetic inference confirm previous findings, of an ancient multicellular cyanobacterial lineage ancestral to the majority of modern cyanobacteria. Relaxed clock analyses provide firm support for an origin of cyanobacteria in the Archean and a transition to multicellularity before the GOE. It is likely that multicellularity had a greater impact on cyanobacterial fitness and thus abundance, than previously assumed. Multicellularity, as a major evolutionary innovation, forming a novel unit for selection to act upon, may have served to overcome evolutionary constraints and enabled diversification of the variety of morphotypes seen in cyanobacteria today.  相似文献   

15.
The diversity and nitrogenase activity of epilithic marine microbes in a Holocene beach rock (Heron Island, Great Barrier Reef, Australia) with a proposed biological calcification "microbialite" origin were examined. Partial 16S rRNA gene sequences from the dominant mat (a coherent and layered pink-pigmented community spread over the beach rock) and biofilms (nonstratified, differently pigmented microbial communities of small shallow depressions) were retrieved using denaturing gradient gel electrophoresis (DGGE), and a clone library was retrieved from the dominant mat. The 16S rRNA gene sequences and morphological analyses revealed heterogeneity in the cyanobacterial distribution patterns. The nonheterocystous filamentous genus Blennothrix sp., phylogenetically related to Lyngbya, dominated the mat together with unidentified nonheterocystous filaments of members of the Pseudanabaenaceae and the unicellular genus Chroococcidiopsis. The dominance and three-dimensional intertwined distribution of these organisms were confirmed by nonintrusive scanning microscopy. In contrast, the less pronounced biofilms were dominated by the heterocystous cyanobacterial genus Calothrix, two unicellular Entophysalis morphotypes, Lyngbya spp., and members of the Pseudanabaenaceae family. Cytophaga-Flavobacterium-Bacteroides and Alphaproteobacteria phylotypes were also retrieved from the beach rock. The microbial diversity of the dominant mat was accompanied by high nocturnal nitrogenase activities (as determined by in situ acetylene reduction assays). A new DGGE nifH gene optimization approach for cyanobacterial nitrogen fixers showed that the sequences retrieved from the dominant mat were related to nonheterocystous uncultured cyanobacterial phylotypes, only distantly related to sequences of nitrogen-fixing cultured cyanobacteria. These data stress the occurrence and importance of nonheterocystous epilithic cyanobacteria, and it is hypothesized that such epilithic cyanobacteria are the principal nitrogen fixers of the Heron Island beach rock.  相似文献   

16.
A survey of the already characterized and potential two-component protein sequences that exist in the nine complete and seven partially annotated cyanobacterial genome sequences available (as of May 2005) showed that the cyanobacteria possess a much larger repertoire of such proteins than most other bacteria. By analysis of the domain structure of the 1,171 potential histidine kinases, response regulators, and hybrid kinases, many various arrangements of about thirty different modules could be distinguished. The number of two-component proteins is related in part to genome size but also to the variety of physiological properties and ecophysiologies of the different strains. Groups of orthologues were defined, only a few of which have representatives with known physiological functions. Based on comparisons with the proposed phylogenetic relationships between the strains, the orthology groups show that (i) a few genes, some of them clustered on the genome, have been conserved by all species, suggesting their very ancient origin and an essential role for the corresponding proteins, and (ii) duplications, fusions, gene losses, insertions, and deletions, as well as domain shuffling, occurred during evolution, leading to the extant repertoire. These mechanisms are put in perspective with the different genetic properties that cyanobacteria have to achieve genome plasticity. This review is designed to serve as a basis for orienting further research aimed at defining the most ancient regulatory mechanisms and understanding how evolution worked to select and keep the most appropriate systems for cyanobacteria to develop in the quite different environments that they have successfully colonized.  相似文献   

17.
A survey of the already characterized and potential two-component protein sequences that exist in the nine complete and seven partially annotated cyanobacterial genome sequences available (as of May 2005) showed that the cyanobacteria possess a much larger repertoire of such proteins than most other bacteria. By analysis of the domain structure of the 1,171 potential histidine kinases, response regulators, and hybrid kinases, many various arrangements of about thirty different modules could be distinguished. The number of two-component proteins is related in part to genome size but also to the variety of physiological properties and ecophysiologies of the different strains. Groups of orthologues were defined, only a few of which have representatives with known physiological functions. Based on comparisons with the proposed phylogenetic relationships between the strains, the orthology groups show that (i) a few genes, some of them clustered on the genome, have been conserved by all species, suggesting their very ancient origin and an essential role for the corresponding proteins, and (ii) duplications, fusions, gene losses, insertions, and deletions, as well as domain shuffling, occurred during evolution, leading to the extant repertoire. These mechanisms are put in perspective with the different genetic properties that cyanobacteria have to achieve genome plasticity. This review is designed to serve as a basis for orienting further research aimed at defining the most ancient regulatory mechanisms and understanding how evolution worked to select and keep the most appropriate systems for cyanobacteria to develop in the quite different environments that they have successfully colonized.  相似文献   

18.
To understand the structure of marine diazotrophic communities in the tropical and subtropical Atlantic Ocean, the molecular diversity of the nifH gene was studied by nested PCR amplification using degenerate primers, followed by cloning and sequencing. Sequences of nifH genes were amplified from environmental DNA samples collected during three cruises (November-December 2000, March 2002, and October-November 2002) covering an area between 0 to 28.3 degrees N and 56.6 to 18.5 degrees W. A total of 170 unique sequences were recovered from 18 stations and 23 depths. Samples from the November-December 2000 cruise contained both unicellular and filamentous cyanobacterial nifH phylotypes, as well as gamma-proteobacterial and cluster III sequences, so far only reported in the Pacific Ocean. In contrast, samples from the March 2002 cruise contained only phylotypes related to the uncultured group A unicellular cyanobacteria. The October-November 2002 cruise contained both filamentous and unicellular cyanobacterial and gamma-proteobacterial sequences. Several sequences were identical at the nucleotide level to previously described environmental sequences from the Pacific Ocean, including group A sequences. The data suggest a community shift from filamentous cyanobacteria in surface waters to unicellular cyanobacteria and/or heterotrophic bacteria in deeper waters. With one exception, filamentous cyanobacterial nifH sequences were present within temperatures ranging between 26.5 and 30 degrees C and where nitrate was undetectable. In contrast, nonfilamentous nifH sequences were found throughout a broader temperature range, 15 to 30 degrees C, more often in waters with temperature of <26 degrees C, and were sometimes recovered from waters with detectable nitrate concentrations.  相似文献   

19.
A Vioque 《Nucleic acids research》1997,25(17):3471-3477
The RNase P RNA gene (rnpB) from 10 cyanobacteria has been characterized. These new RNAs, together with the previously available ones, provide a comprehensive data set of RNase P RNA from diverse cyanobacterial lineages. All heterocystous cyanobacteria, but none of the non-heterocystous strains analyzed, contain short tandemly repeated repetitive (STRR) sequences that increase the length of helix P12. Site-directed mutagenesis experiments indicate that the STRR sequences are not required for catalytic activity in vitro. STRR sequences seem to have recently and independently invaded the RNase P RNA genes in heterocyst-forming cyanobacteria because closely related strains contain unrelated STRR sequences. Most cyanobacteria RNase P RNAs lack the sequence GGU in the loop connecting helices P15 and P16 that has been established to interact with the 3'-end CCA in precursor tRNA substrates in other bacteria. This character is shared with plastid RNase P RNA. Helix P6 is longer than usual in most cyanobacteria as well as in plastid RNase P RNA.  相似文献   

20.
In lakes, benthic micro-algae and cyanobacteria (periphyton) can contribute significantly to total primary productivity and provide important food sources for benthic invertebrates. Despite recognition of their importance, few studies have explored the diversity of the algal and cyanobacterial composition of periphyton mats in temperate lakes. In this study, we sampled periphyton from three New Zealand lakes: Tikitapu (oligotrophic), ōkāreka (mesotrophic) and Rotoiti (eutrophic). Statistical analysis of morphological data showed a clear delineation in community structure among lakes and highlighted the importance of cyanobacteria. Automated rRNA intergenic spacer analysis (ARISA) and 16S rRNA gene clone libraries were used to investigate cyanobacterial diversity. Despite the close geographic proximity of the lakes, cyanobacterial species differed markedly. The 16S rRNA gene sequence analysis identified eight cyanobacterial OTUs. A comparison with other known cyanobacterial sequences in GenBank showed relatively low similarities (91-97%). Cyanotoxin analysis identified nodularin in all mats from Lake Tikitapu. ndaF gene sequences from these samples had very low (≤ 89%) homology to sequences in other known nodularin producers. To our knowledge, this is the first detection of nodularin in a freshwater environment in the absence of Nodularia. Six cyanobacteria species were isolated from Lake Tikitapu mats. None were found to produce nodularin. Five of the species shared low (< 97%) 16S rRNA gene sequence similarities with other cultured cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号