首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In aquatic environments, chemical cues serve as an important source of information for the detection of predation risk. Here, we investigate the response of convict cichlids, Cichlasoma nigrofasciatum, to injury-released chemical cues. We exposed pairs of juvenile convict cichlids first to dechlorinated tap water (control), then later to one of two test stimuli: 1. chemical cues from injured convict cichlids; or 2. chemical cues from injured mosquito fish, Gambusia affinis. Gambusia are allopatric and phylogenetically unrelated to convict cichlids. Gambusia skin was used to control for a general response to injured fish. In response to conspecific cues, convict cichlids significantly increased time spent near the bottom of test aquaria and time under a shelter object. In response to Gambusia skin, convict cichlids tended to increase time spent near the tank bottom but did not increase use of the shelter object. There was a trade-off between antipredator and agonistic behaviours. In response to convict cichlid cues, there was a significant reduction in the frequency of approaches and bites. Gambusia skin extract had no significant effect on aggressive behaviour. These data suggest a species-specific antipredator response to conspecific alarm pheromones in a New World cichlid fish and demonstrate a trade-off between predator avoidance and intraspecific aggression. Further, the presence of an alarm response in this model species sets the stage for the use of chemical cues as a research tool to manipulate predation risk in studies of the interaction between predation risk and reproductive behaviour.  相似文献   

2.
Animals commonly approach (i.e. 'inspect') potential predators. Glowlight tetras, Hemigrammus erythrozonus, have previously been shown to inspect the combined chemical and visual cues originating from novel predators and to modify their inspection (approach) behaviour depending upon the predator's diet. We conducted two experiments to determine whether tetras would inspect the chemical cues of injured prey or the dietary cues of a novel predator in the absence of any visual cues. Shoals of glowlight tetras were exposed to either distilled water (control) or the skin extract of swordtail (lacking ostariophysan alarm pheromones) or the skin extract of tetra (with alarm pheromones). There was no significant difference in the frequency of predator inspection behaviour towards swordtail or tetra skin extract compared to the distilled water controls. In the second experiment, we exposed shoals of tetras to either distilled water or the odour of Jack Dempsey cichlids, Cichlasoma octofasciatum, which had been food deprived, or fed a diet of swordtails or tetras. There was no significant difference in the frequency of predator inspection behaviour towards the odour of the starved cichlids and the odour of the fed cichlids in either of the two diet treatments. However, when tetras were exposed to the odour of cichlids fed tetras, they took significantly longer to initiate an inspection visit, remained further from the source of the chemical cues and inspected in smaller groups, compared with the odour of a starved cichlid or a cichlid fed swordtails. These data strongly suggest that tetras will inspect chemical cues alone, but only if the cue contains information about the predator. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

3.
Individuals that dare approach predators (predator inspection behaviour) may benefit by acquiring information regarding the potential threat of predation. Although information acquisition based on visual cues has been demonstrated for fish, it is unknown whether fish will inspect predators on the basis of chemical cues or whether such inspection behaviour results in information acquisition. Here, we first ascertained whether predator inspection behaviour can be mediated by chemical cues from predators by exposing groups of predator-naive glowlight tetras (Hemigrammus erythrozonus) to the chemical cues of a potential fish predator (convict cichlid Cichlasoma nigrofasciatum) that had been fed either tetras (which possess an alarm pheromone) or swordtails (Xiphophorus helleri, which lack Ostariophysan alarm pheromones). Tetras showed a significant increase in antipredator behaviour when exposed to the tetra-diet cue, but not when exposed to the swordtail-diet cue. Chemically mediated predator inspection behaviour was also affected. Both the latency to inspect and the minimum approach distance to the predator significantly increased, and the mean number of inspectors per predator inspection visit significantly decreased when tetras were exposed to the tetra-diet versus the swordtail-diet chemical cues. We then examined a potential benefit associated with chemically mediated predator inspection behaviour. Only tetras that were initially exposed to the tetra-diet cue and that had inspected the predator acquired the visual recognition of a convict cichlid as a predation threat. Our results thus demonstrate that (1) predator inspection behaviour in the glowlight tetra can be initiated by chemical cues, (2) chemically mediated inspection behaviour is affected by the presence of alarm pheromone, and (3) inspectors benefit by acquiring the recognition of novel predators. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

4.
Animals use chemical cues to find food, locate mates, and detect potential predators. Detecting cues in a risky environment can induce behavioral changes to increase survival. Rusty crayfish (Orconectes rusticus) reduce activity, increase refuge use, and make defensive displays after detecting fish predator cues. However, no studies have introduced amphibian cues. We investigated crayfish responses to hellbender salamander (Cryptobranchus alleganiensis, a dominant predator of crayfish) cues and compared these to responses to largemouth bass (Micropterus salmoides) cues. Largemouth bass occur sympatrically with hellbenders and are known to induce distinct responses in rusty crayfish. We randomly assigned crayfish to predator cue and conspecific alarm cue combinations and recorded frozen behavior, appendage movement, locomotion, and refuge use. We found crayfish increased their proportion of time spent frozen and reduced their proportion of time spent active in the tank when exposed to either predator cue. Moreover, these responses were magnified when crayfish were exposed to predator cues in combination with conspecific alarm cues. Our experiment demonstrates evidence in support of the crayfish’s ability to detect and appropriately respond to predator cues alone and in combination with conspecific alarm cues. Future work should investigate the effects of these behavioral changes on trophic dynamics in a natural system.  相似文献   

5.
Predation is a strong selective force acting on prey animals. Predation is by nature highly variable in time; however, this aspect of predation risk has traditionally been overlooked by behavioural ecologists. Lima and Bednekoff proposed the predation risk allocation hypothesis (RAH), predicting how temporal variation in predation risk drives prey antipredator behaviours. This model is based on the concept that prey adaptively allocate their foraging and antipredator efforts across high‐ and low‐risk situations, depending on the duration of high‐ vs. low‐risk situations and the relative risk associated with each of them. An unstudied extension of the RAH is the effect of predictability of predation risk. A predictable risk should lead to prey displaying minimal vigilance behaviours during predictable low‐risk periods and the strongest antipredator behaviours during risky periods. Conversely, an unpredictable predation risk should result in prey displaying constant vigilance behaviour, with suboptimal foraging rates during periods of safety but antipredator behaviours of lower intensity during periods of risk. We tested this extension of the RAH using convict cichlids exposed to high‐risk alarm cues at two frequencies of risk (1× vs. 3×) per day, on either a fixed or random schedule for 5 d. We then tested the fish for a response to high‐risk cues (alarm cues) and to low‐risk cues (disturbance resulting from the introduction of distilled water). Our study supports previous results on the effects of risk frequency and cue intensity on cichlid behaviour. We failed to show an effect of risk predictability on the behavioural responses of cichlids to high‐risk alarm cues, but predictability did influence responses to low‐risk cues. We encourage further studies to test the effect of predictability in other systems.  相似文献   

6.
In species with restricted dispersal, traits may become genetically fixed leading to local adaptations. Therefore, predator avoidance in a prey species may differ between populations experiencing different predator regimes, but also between sexes within a population due to different vulnerability to predators. In this study we used male and female Gammarus pulex from two different predator regimes: fishless ponds, where invertebrates are the dominant predators and ponds with predatory fish. In the laboratory we examined refuge use, mortality, leaf decomposition rate and pair-formation in G. pulex when exposed to predator cues from either invertebrate predators or fish. Individuals from fish ponds spent more time in refuge and had a higher mortality than those from fishless ponds independent of predator cues. There was no effect of pond predator regime or predator cues on leaf decomposition rates. Further, fewer individuals formed pairs in G. pulex from fish ponds than from fishless ponds. Male G. pulex had a higher mortality and a higher decomposition rate than females independent of predator cues. However, there was no difference in refuge use between sexes. Our study shows that there are general differences in behaviour traits, both between predator regimes and sexes in G. pulex.  相似文献   

7.
The ability to use multiple cues in assessing predation risk is especially important to prey animals exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds in the open by hiding inside rock crevices, where they may encounter saurophagous ambush smooth snakes. Lizards should avoid refuges with these snakes, but in refuges lizards can also find non‐saurophagous viperine snakes, which lizards do not need to avoid. We investigated in the laboratory whether wall lizards used different predator cues to detect and discriminate between snake species within refuges. We simulated predatory attacks in the open to lizards, and compared their refuge use, and the variation in the responses after a repeated attack, between predator‐free refuges and refuges containing visual, chemical, or visual and chemical cues of saurophagous or non‐saurophagous snakes. Time to enter a refuge was not influenced by potential risk inside the refuge. In contrast, in a successive second attack, lizards sought cover faster and tended to increase time spent hidden in the refuge. This suggests a case of predator facilitation because persistent predators in the open may force lizards to hide faster and for longer in hazardous refuges. However, after hiding, lizards spent less time in refuges with both chemical and visual cues of snakes, or with chemical cues alone, than in predator‐free refuges or in refuges with snake visual cues alone, but there were no differences in response to the two snake species. Therefore, lizards could be overestimating predation risk inside refuges. We discuss which selection pressures might explain this lack of discrimination of predatory from similar non‐predatory snakes.  相似文献   

8.
Recent evidence suggests that predator inspection behaviour by Ostariophysan prey fishes is regulated by both the chemical and visual cues of potential predators. In laboratory trials, we assessed the relative importance of chemical and visual information during inspection visits by varying both ambient light (visual cues) and predator odour (chemical cues) in a 2 × 2 experimental design. Shoals of glowlight tetras (Hemigrammus erythrozonus) were exposed to a live convict cichlid (Archocentrus nigrofasciatus) predator under low (3 lux) or high (50 lux) light levels and in the presence of the odour of a cichild fed tetras (with an alarm cue) or swordtails (Xiphophorus helleri, with an alarm cue not recognized by tetras). Tetras exhibited threat‐sensitive inspection behaviour (increased latency to inspect, reduced frequency of inspection, smaller inspecting group sizes and increased minimum approach distance) towards a predator paired with a tetra‐fed diet cue, regardless of light levels. Similar threat‐sensitive inspection patterns were observed towards cichlids paired with a swordtail‐fed diet cue only under high light conditions. Our data suggest that chemical cues in the form of prey alarm cues in the diet of the predator, are the primary source of information regarding local predation risk during inspection behaviour, and that visual cues are used when chemical information is unavailable or ambiguous.  相似文献   

9.
The anti‐predator behaviour of first‐feeding (9 mm total length) hatchery‐reared pike Esox lucius larvae and wild‐caught three‐spined stickleback Gasterosteus aculeatus larvae was studied in the presence of chemical and visual signals from a fish predator. The results clearly showed that both fish species detected the predator by chemical signals alone but the combined chemical and visual signals caused stronger and more diverse reactions. Subsequent to predator detection, their swimming activity decreased, they attacked zooplankton less frequently and spent more time in the vegetation. Fishes differed in their anti‐predator responses. Pike reacted more clearly to chemical signals alone while three‐spined stickleback needed both chemical and visual cues to assess the predation risk. The strongest reaction was the reduction in swimming activity in the three‐spined stickleback (38% decrease) and a decrease in attack rate of the pike (39% decrease), but only when a refuge was available. Pike were more dependent on the vegetation cover showing almost no anti‐predator responses in the absence of a refuge. In addition, there was a difference in the refuge use of three‐spined stickleback between different macrophytes, indicating a complex or dense structure, which was difficult to penetrate or chemical excretion in one of them.  相似文献   

10.
We studied antipredatory responses of lotic mayfly (Baetis) nymphs in a factorial experiment with four levels of fish presence: (1) a freely foraging fish (the European minnow,Phoxinus phoxinus), (2) a constrained fish, (3) water from a fish stream, (4) water from a fishless stream. LargeBaetis nymphs drifted mainly during night-time in treatments involving either the chemical or actual presence of fish, whereas no diel periodicity was observed when the water was not conditioned with fish odour. The response was strongest when the fish was uncaged, which suggests that visual or hydrodynamic cues are needed in addition to chemical ones for an accurate assessment of predation risk. Fish presence had no effect on the drift rates of small nymphs. Instead, they increased their refuge use in the presence of a live fish. Chemical cues alone did not have any effect on the refuge use of any of theBaetis size classes. Our results indicate active drift entry by mayfly nymphs. Because predation pressure is spatially and temporally variable, nymphs must sample the environment in order to locate predator-free areas or areas with low predation risk. Drifting should be the most energy-saving way to do this. To avoid the risk from visually feeding fish, large individuals can sample safely (i.e. enter drift) only at night-time, while the small ones can also do this safely during the day. We suggest that, contrary to some earlier assumptions, mayfly drift is not a fixed prey response. Instead,Baetis nymphs are able to assess the prevailing predation pressure, and they adjust their foraging behaviour accordingly.  相似文献   

11.
1. Olfactory predator search processes differ fundamentally to those based on vision, particularly when odour cues are deposited rather than airborne or emanating from a point source. When searching for visually cryptic prey that may have moved some distance from a deposited odour cue, cue context and spatial variability are the most likely sources of information about prey location available to an olfactory predator. 2. We tested whether the house mouse (Mus domesticus), a model olfactory predator, would use cue context and spatial variability when searching for buried food items; specifically, we tested the effect of varying cue patchiness, odour strength, and cue-prey association on mouse foraging success. 3. Within mouse- and predator-proof enclosures, we created grids of 100 sand-filled Petri dishes and buried peanut pieces in a set number of these patches to represent visually cryptic 'prey'. By adding peanut oil to selected dishes, we varied the spatial distribution of prey odour relative to the distribution of prey patches in each grid, to reflect different levels of cue patchiness (Experiment 1), odour strength (Experiment 2) and cue-prey association (Experiment 3). We measured the overnight foraging success of individual mice (percentage of searched patches containing prey), as well as their foraging activity (percentage of patches searched), and prey survival (percentage of unsearched prey patches). 4. Mouse foraging success was highest where odour cues were patchy rather than uniform (Experiment 1), and where cues were tightly associated with prey location, rather than randomly or uniformly distributed (Experiment 3). However, when cues at prey patches were ten times stronger than a uniformly distributed weak background odour, mice did not improve their foraging success over that experienced when cues were of uniform strength and distribution (Experiment 2). 5. These results suggest that spatial variability and cue context are important means by which olfactory predators can use deposited odour cues to locate visually cryptic prey. They also indicate that chemical crypsis can disrupt these search processes as effectively as background matching in visually based predator-prey systems.  相似文献   

12.
A diversity of aquatic organisms release chemical alarm signals when attacked or captured by a predator. These alarm signals are thought to warn other conspecifics of danger and, consequently, may benefit receivers by increasing their survival. Here we experimentally investigated the differences in behaviour and survival of hatchery-reared juvenile brook charr Salvelinus fontinalis that had been exposed to either brook charr skin extract (experimental treatment) or a control of swordtail skin extract (control treatment). Charr exposed to conspecific skin extract exhibited a significant reduction in movement and/or altered their foraging behaviour in the laboratory when compared with charr exposed to swordtail skin extract. We also exposed charr to either water conditioned by a single brook charr disturbed by a predatory bird model or water conditioned by a single undisturbed brook charr. Charr exposed to disturbance signals reduced activity significantly more than charr exposed to chemical stimuli from undisturbed charr. These results demonstrate the existence of both damage-released alarm signals and disturbance signals in brook charr. Wild brook charr also responded to damage-released alarm cues under natural conditions. Charr avoided areas of a stream with minnow traps labelled with conspecific alarm cues vs. control cues. During staged encounters with chain pickerel Esox niger in the laboratory, predator-naive charr fry were better able to evade the predator if they were previously warned by an alarm signal, thus suggesting a survival benefit to receivers. Collectively, these results demonstrate that the presence of alarm signals in brook charr has important implications for understanding predator–prey interactions.  相似文献   

13.
Luisa Amo 《Animal behaviour》2004,67(4):647-653
The threat sensitivity hypothesis assumes that multiple cues from a predator should contribute in an additive way to determine the degree of risk-sensitive behaviour. The ability to use multiple cues in assessing the current level of predation risk should be especially important to prey exposed to multiple predators. Wall lizards, Podarcis muralis, respond to predatory attacks from birds or mammals by hiding inside rock crevices, where they may encounter another predator, the smooth snake, Coronella austriaca. We investigated in the laboratory whether chemical cues may be important to wall lizards for detection of snakes. The greater tongue-flick rate and shorter latency to first tongue-flick in response to predator scents indicated that lizards were able to detect the snakes' chemical cues. We also investigated the use of different predatory cues by lizards when detecting the presence of snakes within refuges. We simulated successive predator attacks and compared the propensity of lizards to enter the refuge and time spent within it for predator-free refuges, refuges containing either only visual or chemical cues of a snake, or a combination of these. The antipredatory response of lizards was greater when they were exposed to both visual and chemical cues than when only one cue was presented, supporting the threat sensitivity hypothesis. This ability may improve the accuracy of assessments of the current level of predation risk inside the refuge. It could be especially important in allowing lizards to cope with threats posed by two types of predators requiring conflicting prey defences.  相似文献   

14.
Foraging in animals is often associated with characteristicbody postures, such as the head-down posture. When foragingconflicts with the ability to detect predators or to flee, individualsmay incur a greater risk of mortality to predation than otherwise.Here we investigate the influence of different foraging postures(horizontal versus nose-down body posture) on the ability ofindividuals to respond to approaching predators and on the riskof mortality to predation in the guppy (Poecilia reticulata).Individuals engaged in nose-down foraging were assumed to beable to visually scan a smaller area for predators and to escapeless effectively due to their body posture, and thus are morevulnerable to stalking predators than horizontally foragingones. In a first experiment, we separately exposed nonforaging,horizontally foraging, and nose-down foraging guppies to anapproaching cichlid fish predator model. Nonforaging guppiesreacted sooner to and initiated flight further away from theapproaching model than did foraging fish collectively, and horizontallyforaging individuals responded sooner to the model than nose-downforaging ones. Comparing all test guppies, nose-down foragingindividuals were the most likely not to exhibit any responseto the predator model. When presented with a simultaneous choiceof two guppies behind a one-way mirror, individual blue acaracichlid (Aequidens pulcher), a natural predator of the guppy,preferred to attack foraging guppies over nonforaging ones andnose-down foraging guppies over horizontally foraging individuals.In a final experiment with free-swimming cichlids and guppies,we demonstrated that individual risk of predation for guppiesforaging nose down was greater than for guppies foraging horizontally,and both were at greater risk than nonforaging guppies. Thislatter result is consistent with the above differences in theguppy's responsiveness to approaching predators depending ontheir foraging behavior, and with the finding that cichlid predatorspreferred fish that were less likely to show any response tothem. Our results therefore indicate that the ability to respondto approaching predators and the risk of mortality to predationin the guppy is strongly influenced by their foraging activity,and in particular their foraging posture, and that cichlid predatorspreferentially select less wary and more vulnerable guppies.[BehavEcol 7: 264–271 (1996)]  相似文献   

15.
In benthic habitats, predators can generally not be detected visually, so olfaction may be particularly important for inducing anti-predation behaviors in prey organisms. Manipulative parasites infecting benthic hosts could suppress these responses so as to increase the probability of predation and thus trophic transmission. We studied how infection with the acanthocephalan Echinorhynchus borealis affects the response of the benthic amphipod Pallasea quadrispinosa to water conditioned by burbot (Lota lota), the parasite's definitive host. In normal lake water, refuge use by infected and uninfected amphipods was similar, but when exposed to burbot-conditioned water, uninfected amphipods spent much more time hiding than infected amphipods. Thus, rather than affecting ambient hiding behavior, E. borealis infection seems to alter host response to a predator. A group of amphipods sampled from a postglacial spring that is devoid of fish predators exhibited only a weak response to burbot-conditioned water, perhaps suggesting these anti-predator behaviors are costly to maintain. The hiding behavior of spring and infected amphipods was very similar. If the reduced refuge use by the spring amphipods reflects adaptation to a predator-free environment, this indicates that E. borealis severely weakens its host's anti-predator behavior. Presumably this increases the likelihood of parasite transmission.  相似文献   

16.
Aggressive behavior can be an important factor in determining how animals use and divide space and resources. Previous studies have shown that aggression in fishes can be influenced by a variety of factors, including water temperature and resource levels. In this study, we tested if the amount of habitat structure in the environment affected aggression levels in female convict cichlids Archocentrus nigrofasciatus. We performed a laboratory experiment in which we placed female convict cichlids into an aquarium with low or high amounts of habitat structure and monitored the dominant female's behavior toward the subordinate female. Aggressive behavior in convict cichlids primarily consists of chases and bites. We found that the total time the dominant female spent chasing the subordinate female was greater when there was a low amount of habitat structure as compared to when there was a high amount of habitat structure. We also found that both the average duration of a chasing bout and the number of bites directed at the subordinate fish increased when there was a low amount of structure, but the number of chases did not. These results indicate that increased habitat structural complexity decreases aggressive behavior in convict cichlids [Current Zoology 56 (1): 52-56, 2010].  相似文献   

17.
A review of studies, mainly experimental, on modifications of fish behavior caused by microscale habitat heterogeneity. Elements or units of heterogeneity influence on decision making in fish either as contestable physical resources, or as information cues or signals. Habitat heterogeneity arises from abiotic physical objects, aggregations of prey, and grouping fish. Feeding behavior of fish including food search, choice, and consumption are significantly dependent on the structure of heterogeneity of the habitat, where fish are foraging. Depending on the parameters of heterogeneity, prey characteristics and a predator foraging mode, heterogeneous habitats can either facilitate feeding behavior, or makes it more difficult. Habitat heterogeneity plays significant and, as a rule, positive role providing various refuges for fish hiding from predators. Landmarks help fish to find the shortest route to shelters. If a habitat is rather homogeneous or in a novel habitat, which appears to be homogeneous, shoaling of fish makes surroundings of each individual in the school structured providing fish with a substitute of shelters and landmarks. Recent experimental and field results convincingly demonstrate that the effects of main biotic and abiotic factors can be significantly modified by the structure (level of spatial heterogeneity) of habitats. When a habitat is physically structured, tendencies to disperse and establish individual territories prevail. In uniform, poorly structured habitats, fish tend to gather in schools or shoals and maintain larger aggregations. Food is considered the major contestable resource, but fish often demonstrate interference competition not for food, but for heterogeneous sites in the habitat, where they vigorously fight either for a shelter or just for visually non-uniform area. Visually heterogeneous sites can be used by fish as a template of a future individual territory, where fish can find not only food but also a refuge from predators. Fish use individual territories for much longer period than food patches. Just the presence of either physical refuge or “social refuge” neutralized the inhibiting effect of kairomons and allowed fish to feed more intensively despite the potential danger. We suggest that the decision-making was influenced only by available information of possibility to use a refuge. Habitat complexity is almost always accompanied by visual and other types of heterogeneity. Adaptive significance of fish attraction to the units of heterogeneity is probably related to the fact that under natural situations vital for fish objects are often tightly coupled with heterogeneous sites. Thus, units of habitat heterogeneity can be reliable signals or information cues in uncertain, i.e. changeable and poorly predictable, habitats.  相似文献   

18.
Invasive species capable of recognizing potential predators may have increased establishment rates in novel environments. Individuals may retain historical predator recognition and invoke innate responses in the presence of taxonomically or ecologically similar predators, generalize antipredator responses, or learn to avoid risky species in novel environments. Invasive amphibians in aquatic environments often use chemical cues to assess predation risk and learn to avoid novel predators via direct experience and/or associated chemical cues. Ontogeny may also influence recognition; experience with predators may need to occur at certain developmental stages for individuals to respond correctly. We tested predator recognition in invasive American bullfrog ( Lithobates catesbeianus) tadpoles that varied in experience with fish predators at the population and individual scale. We found that bullfrog tadpoles responded to a historical predator, largemouth bass ( Micropterus salmoides), only if the population was locally sympatric with largemouth bass. Individuals from a population that did not co‐occur with largemouth bass did not increase refuge use in response to either largemouth bass chemical cues alone or chemical cues with diet cues (largemouth bass fed bullfrog tadpoles). To test whether this behavioral response was generalized across fish predators, we exposed tadpoles to rainbow trout ( Oncorhynchus mykiss) and found that tadpoles could not recognize this novel predator regardless of co‐occurrence with other fish species. These results suggest that environment may be more important for predator recognition than evolutionary history for this invasive species, and individuals do not retain predator recognition or generalize across fish predators.  相似文献   

19.
Synopsis Spatially-explicit modeling of fish growth rate potential is a relatively new approach that uses physical and biological properties of aquatic habitats to map spatial patterns of fish growth rate potential. Recent applications of spatially-explicit models have used an arbitrary spatial scale and have assumed a fixed foraging efficiency. We evaluated the effects of spatial scale, predator foraging efficiency (combined probabilities of prey recognition, attack, capture, and ingestion), and predator spatial distribution on estimates of mean growth rate potential of chinook salmon,Oncorhynchus tshawytscha. We used actual data on prey densities and water temperatures taken from Lake Ontario during the summer, as well as, simulated data assuming binomial distribution of prey. Results show that a predator can compensate for low foraging efficiency by inhabiting the most profitable environments (regions of high growth rate potential). Differences exist in predictions of growth rate potential across spatial scales of observation and a single scale may not be adequate for interpreting model results across seasons. Continued refinements of this modeling approach must focus on the assumptions of stationary distributions of predator and prey populations and predator foraging tactics.  相似文献   

20.
Odour-related behaviours in aquatic invertebrates are important and effective anti-predator behaviours. Parasites often alter invertebrate host behaviours to increase transmission to hosts. This study investigated the responses of the amphipod Hyalella azteca when presented with two predator chemical cues: (i) alarm pheromones produced by conspecifics and (ii) kairomones produced by a predatory Green Sunfish (Lepomis cyanellus). We compared the responses of amphipods uninfected and infected with the acanthocepalan parasite Leptorhynchiodes thecatus. Uninfected amphipods reduced activity and increased refuge use after detecting both the alarm pheromones and predator kairomones. Infected amphipods spent significantly more time being active and less time on the refuge than uninfected amphipods, and behaved as if they had not detected the chemical stimulus. Therefore, L. thecatus infections disrupt the amphipods’ anti-predator behaviours and likely make their hosts more susceptible to predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号