首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 62 毫秒
1.
An identification key for 20 common strand-forming indoor wood decay fungi is given. The key is based on observations of material from affected buildings and on wood samples that have been incubated in the laboratory. The key is with macro- and microscopic photographs.  相似文献   

2.
Mammals with more rapid and agile locomotion have larger semicircular canals relative to body mass than species that move more slowly. Measurements of semicircular canals in extant mammals with known locomotor behaviours can provide a basis for testing hypotheses about locomotion in fossil primates that is independent of postcranial remains, and a means of reconstructing locomotor behaviour in species known only from cranial material. Semicircular canal radii were measured using ultra high resolution X-ray CT data for 9 stem primates (“plesiadapiforms”; n = 11), 7 adapoids (n = 12), 4 omomyoids (n = 5), and the possible omomyoid Rooneyia viejaensis (n = 1). These were compared with a modern sample (210 species including 91 primates) with known locomotor behaviours. The predicted locomotor agilities for extinct primates generally follow expectations based on known postcrania for those taxa. “Plesiadapiforms” and adapids have relatively small semicircular canals, suggesting they practiced less agile locomotion than other fossil primates in the sample, which is consistent with reconstructions of them as less specialized for leaping. The derived notharctid adapoids (excluding Cantius) and all omomyoids sampled have relatively larger semicircular canals, suggesting that they were more agile, with Microchoerus in particular being reconstructed as having had very jerky locomotion with relatively high magnitude accelerations of the head. Rooneyia viejaensis is reconstructed as having been similarly agile to omomyids and derived notharctid adapoids, which suggests that when postcranial material is found for this species it will exhibit features for some leaping behaviour, or for a locomotor mode requiring a similar degree of agility.  相似文献   

3.
In this review some emerging issues of parasite infections in wildlife, particularly in Australia, are considered. We discuss the importance of understanding parasite biodiversity in wildlife in terms of conservation, the role of wildlife as reservoirs of parasite infection, and the role of parasites within the broader context of the ecosystem. Using a number of parasite species, the value of undertaking longitudinal surveillance in natural systems using non-invasive sampling and molecular tools to characterise infectious agents is illustrated in terms of wildlife health, parasite biodiversity and ecology.  相似文献   

4.
A phylogenetic analysis of Bambusa and allies based on the plastid DNA non-coding regions rps16-trnQ, trnC-rpoB, trnH-psbA and trnD-T, and a partial nuclear GBSSI gene, was carried out. This included representatives from all four Bambusa subgenera (including type species), a group of segregate Southeast Asian genera distinctive by their climbing–scrambling culms (Dinochloa, Holttumochloa, Kinabaluchloa, Maclurochloa, Soejatmia, Sphaerobambos), and two other Bambusinae genera (Dendrocalamus, Gigantochloa). The results do not support the present subgeneric classification of Bambusa. The climbing Southeast Asian genera, all of which include species previously placed in Bambusa, are distinct from the “core Bambusa group” (type species and alliance) and the Bambusa complex generally.  相似文献   

5.
The zebrafish muscle segment homeobox genes msxB, msxC and msxE are expressed in partially overlapping domains in the neural crest and preplacodal ectoderm. We examined the roles of these msx genes in early development. Disrupting individual msx genes causes modest variable defects, whereas disrupting all three produces a reproducible severe phenotype, suggesting functional redundancy. Neural crest differentiation is blocked at an early stage. Preplacodal development begins normally, but placodes arising from the msx expression domain later show elevated apoptosis and are reduced in size. Cell proliferation is normal in these tissues. Unexpectedly, Msx-deficient embryos become ventralized by late gastrulation whereas misexpression of msxB dorsalizes the embryo. These effects appear to involve Distal-less (Dlx) protein activity, as loss of dlx3b and dlx4b suppresses ventralization in Msx-depleted embryos. At the same time, Msx-depletion restores normal preplacodal gene expression to dlx3b-dlx4b mutants. These data suggest that mutual antagonism between Msx and Dlx proteins achieves a balance of function required for normal preplacodal differentiation and placement of the neural-nonneural border.  相似文献   

6.
7.
Leg development in Drosophila has been studied in much detail. However, Drosophila limbs form in the larva as imaginal discs and not during embryogenesis as in most other arthropods. Here, we analyze appendage genes in the spider Cupiennius salei and the beetle Tribolium castaneum. Differences in decapentaplegic (dpp) expression suggest a different mode of distal morphogen signaling suitable for the specific geometry of growing limb buds. Also, expression of the proximal genes homothorax (hth) and extradenticle (exd) is significantly altered: in the spider, exd is restricted to the proximal leg and hth expression extends distally, while in insects, exd is expressed in the entire leg and hth is restricted to proximal parts. This reversal of spatial specificity demonstrates an evolutionary shift, which is nevertheless compatible with a conserved role of this gene pair as instructor of proximal fate. Different expression dynamics of dachshund and Distal-less point to modifications in the regulation of the leg gap gene system. We comment on the significance of this finding for attempts to homologize leg segments in different arthropod classes. Comparison of the expression profiles of H15 and optomotor-blind to the Drosophila patterns suggests modifications also in the dorsal-ventral patterning system of the legs. Together, our results suggest alterations in many components of the leg developmental system, namely proximal-distal and dorsal-ventral patterning, and leg segmentation. Thus, the leg developmental system exhibits a propensity to evolutionary change, which probably forms the basis for the impressive diversity of arthropod leg morphologies.  相似文献   

8.
Here, we have studied how Sox genes and BMP signaling are functionally coupled during limb chondrogenesis. Using the experimental model of TGFbeta1-induced interdigital digits, we dissect the sequence of morphological and molecular events during in vivo chondrogenesis. Our results show that Sox8 and Sox9 are the most precocious markers of limb cartilage, and their induction is independent and precedes the activation of BMP signaling. Sox10 appears also to cooperate with Sox9 and Sox8 in the establishment of the digit cartilages. In addition, we show that experimental induction of Sox gene expression in the interdigital mesoderm is accompanied by loss of the apoptotic response to exogenous BMPs. L-Sox5 and Sox6 are respectively induced coincident and after the expression of Bmpr1b in the prechondrogenic aggregate, and their activation correlates with the induction of Type II Collagen and Aggrecan genes in the differentiating cartilages. The expression of Bmpr1b precedes the appearance of morphological changes in the prechondrogenic aggregate and establishes a landmark from which the maintenance of the expression of all Sox genes and the progress of cartilage differentiation becomes dependent on BMPs. Moreover, we show that Ventroptin precedes Noggin in the modulation of BMP activity in the developing cartilages. In summary, our findings suggest that Sox8, Sox9, and Sox10 have a cooperative function conferring chondrogenic competence to limb mesoderm in response to BMP signals. In turn, BMPs in concert with Sox9, Sox6, and L-Sox5 would be responsible for the execution and maintenance of the cartilage differentiation program.  相似文献   

9.
Relationships of the genera in the Enterobacteriaceae containing plant pathogenic species: Brenneria, Dickeya, Enterobacter, Erwinia, Pantoea, Pectobacterium, and Samsonia, were investigated by comparison of their nucleotide and peptide sequences of atpD, carA, recA, and the concatenated sequences. Erwinia spp. and Pantoea spp., with Pectobacterium cypripedii, formed a group distinct from other pathogenic taxa. Pectobacterium, Brenneria, Dickeya, and Samsonia formed a contiguous clade. Samsonia was usually concurrent with Pectobacterium. Most Brenneria were also close to Pectobacterium, suggesting that these three taxa might be better represented as a single genus. Brenneria quercina was not closely associated with other members of this genus and may represent a separate genus. The sequences representing Dickeya were distinct, further supporting the generic status of the taxon. Plant pathogenic Enterobacter spp. display such sequence variability that few definite conclusions as to their specific placement could be made. These data highlight the difficulty of drawing reliable and robust taxonomic conclusions based on comparative analysis of sequence data without some independent criterion to calibrate a scale for diversity.  相似文献   

10.
rx1 and pax6 are necessary for the establishment of the vertebrate eye field and for the maintenance of the retinal stem cells that give rise to multiple retinal cell types. They also are differentially expressed in cellular layers in the retina when cell fates are being specified, and their expression levels differentially affect the production of amacrine cell subtypes. To determine whether rx1 and pax6 expression after the eye field is established simply maintains stem cell-like qualities or affects cell type differentiation, we used hormone-inducible constructs to increase or decrease levels/activity of each protein at two different neural plate stages. Our results indicate that rx1 regulates the size of the retinal stem cell pool because it broadly affected all cell types, whereas pax6 regulates more restricted retinal progenitor cells because it selectively affected different cell types in a time-dependent manner. Analysis of rx1 and pax6 effects on proliferation, and expression of stem cell or differentiation markers demonstrates that rx1 maintains cells in a stem cell state by promoting proliferation and delaying expression of neural identity and differentiation markers. Although pax6 also promotes proliferation, it differentially regulates neural identity and differentiation genes. Thus, these two genes work in parallel to regulate different, but overlapping aspects of retinal cell fate determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号