首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
Plant genomes encode a variety of protein kinases, and while some are functional homologues of animal and fungal kinases, others have a novel structure. This review focuses on three groups of unusual membrane-associated plant protein kinases: receptor-like protein kinases (RLKs), calcium-dependent protein kinases (CDPKs), and histidine protein kinases. Animal RLKs have a putative extracellular domain, a single transmembrane domain, and a protein kinase domain. In plants, all of the RLKs identified thus far have serine/threonine signature sequences, rather than the tyrosine-specific signature sequences common to animals. Recent genetic experiments reveal that some of these plant kinases function in development and pathogen resistance. The CDPKs of plants and protozoans are composed of a single polypeptide with a protein kinase domain fused to a C-terminal calmodulin-like domain containing four calcium-binding EF hands. No functional plant homologues of protein kinase C or Ca2+/calmodulin-dependent protein kinase have been identified, and no animal or fungal CDPK homologues have been identified. Recently, histidine kinases have been shown to participate in signaling pathways in plants and fungi. ETR1, an Arabidopsis histidine kinase homologue with three transmembrane domains, functions as a receptor for the plant hormone ethylene. G-protein-coupled receptors, which often serve as hormone receptors in animal systems, have not yet been identified in plants. Received: 18 August 1997/Revised: 23 December 1997  相似文献   

2.
The structure of plant receptor-like kinases (RLKs) is similar to that of animal receptor tyrosine kinases (RTKs), and consists of an extracellular domain, a transmembrane span, and a cytoplasmic domain containing the conserved kinase domain. The mechanism by which animal RTKs, and probably plant RLKs, signal includes the dimerization of the receptor, their intermolecular phosphorylation, and the phosphorylation of downstream signalling proteins. However, atypical RTKs with a kinase-dead domain that signal through phosphorylation-independent mechanisms have also been described in animals. In the last few years, some atypical RLKs have also been reported in plants. Here these examples and their possible signalling mechanisms are reviewed. Plant genomes contain a much larger number of genes coding for receptor kinases than other organisms. The prevalence of atypical RLKs in plants is analysed here. A sequence analysis of the Arabidopsis kinome revealed that 13% of the kinase genes do not retain some of the residues that are considered as invariant within kinase catalytic domains, and are thus putatively kinase-defective. This percentage rises to close to 20% when analysing RLKs, suggesting that phosphorylation-independent mechanisms mediated by atypical RLKs are particularly important for signal transduction in plants.  相似文献   

3.
类受体激酶是一类具有激酶活性的单次跨膜受体,通过接收和传递胞外信号调控细胞的生理反应,参与植物生长发育过程。植物根在生长发育过程中受到大量的外部刺激和内源性发育信号的影响,植物必须通过整合这些信号并转化为细胞反应,才能适应不断变化的环境条件;植物类受体激酶作为细胞膜上的信息监测者,通过与外源和内源信号的通讯调控根的生长发育。该文对近年来国内外有关类受体激酶的结构、分类及其作用机制,特别是植物类受体激酶在根发育信号转导途径中的功能和作用等方面的研究进展进行综述,为进一步揭示植物类受体激酶在根生长发育中的功能及其作用机制提供参考。  相似文献   

4.
植物细胞依赖细胞质膜上的受体感知并传递环境信号, 而受体通过与配体特异结合启动一系列下游信号转导途径, 维持植物正常的生命活动及其对外界环境变化的适应。类受体激酶是其中一类重要受体, 通常由胞外结合结构域、跨膜结构域和胞内激酶结构域3部分组成, 是植物适应外界环境变化的重要调节枢纽。FER属于CrRLK1L类受体蛋白激酶家族, 最早被发现在高等植物雌雄配子体识别过程中发挥作用。随后, 众多研究表明, FER在植物生长发育、激素间交互作用、植物与病原菌互作和逆境响应等多种生物学过程中扮演重要角色, 是近年来植物信号通路研究领域的“明星蛋白”。随着植物病理学研究的不断深入, FER在植物与病原菌互作过程中的功能备受关注。该文主要综述FER调节植物与病原菌互作的研究进展, 旨在为进一步解析类受体蛋白激酶在植物细胞响应病原菌侵染过程中的信号转导机制提供参考。  相似文献   

5.
Plant receptor-like protein kinases (RLKs) are transmembrane proteins with an extracellular domain and an intracellular kinase domain, which enable plant perceiving diverse extracellular stimuli to trigger the intracellular signal transduction. The somatic embryogenesis receptor kinases (SERKs) code the leucine-rich-repeat receptor-like kinase (LRR-RLK), and have been demonstrated to associate with multiple ligand-binding receptors to regulate plant growth, root development, male fertility, stomatal development and movement, and immune responses. Here, we focus on the progress made in recent years in understanding the versatile functions of Arabidopsis SERK proteins, and review SERK proteins as co-receptor to perceive different endogenous and environmental cues in different signaling pathway, and discuss how the kinase activity of SERKs is regulated by various modification.  相似文献   

6.
自然界中植物的生长发育受到各种环境变化的影响。为了响应外界各种环境条件,植物演化出一系列识别和传递环境信号的蛋白分子,其中比较典型的是植物细胞质膜上的类受体蛋白激酶(RLKs)。凝集素类受体蛋白激酶(LecRLKs)是类受体蛋白激酶家族中的一个亚族,它主要包含3个结构域:细胞外凝集素结构域、跨膜结构域和细胞内激酶结构域。根据细胞外凝集素结构域的不同,LecRLKs可分为3种不同类型:L、G和C型。近年来,研究表明LecRLKs在植物生物/非生物胁迫和发育调控中发挥非常重要的作用。该文综述了植物凝集素类受体蛋白激酶的研究历史、结构特点、分类以及生物学功能,并重点阐述凝集素类受体蛋白激酶在植物生物/非生物胁迫响应和调控发育方面的功能。对不同类型和不同功能的植物凝集素类受体蛋白激酶进行阐述将有利于对该类蛋白开展功能研究,并为作物改良提供有益借鉴。  相似文献   

7.
植物受体蛋白激酶的研究进展   总被引:1,自引:0,他引:1  
张蕾  吕应堂 《生命科学》2002,14(2):95-98,94
在植物中存在一种由胞外结构域、跨膜区域和胞内的蛋白激酶区域三部分组成的跨膜受体蛋白激酶(receptor-lik protein kinases,RLKs)。该蛋白一方面作为胞外特异配基的受体,同时本身又是一种蛋白激酶。研究表明,植物细胞中的RLKs可能参与了植物细胞抗逆反应,植物形态发生、自交不亲和等生理生化反应,作者将从RLKs的结构、种类,基因表达方式及其植物生长和发育过程中的作用做简要介绍。  相似文献   

8.
In plants, several types of receptor-like kinases (RLK) have been isolated and characterized based on the sequence of their extracellular domains. Some of these RLKs have been demonstrated to be involved in plant development or in the reaction to environmental signals. Here, we describe a RLK gene family in wheat (wlrk, wheat leaf rust kinase) with a new type of extracellular domain. A member of this new gene family has previously been shown to cosegregate with the leaf rust resistance gene Lr10. The diversity of the wlrk gene family was studied by cloning the extracellular domain of different members of the family. Sequence comparisons demonstrated that the extracellular domain consists of three very conserved regions interrupted by three variable regions. Linkage analysis indicated that the wlrk genes are specifically located on chromosome group 1 in wheat and on the corresponding chromosomes of other members of the Triticeae family. The wlrk genes are constitutively expressed in the aerial parts of the plant whereas no expression was detected in roots. Protein immunoblots demonstrated that the WLRK protein coded by the Lrk10 gene is an intrinsic plasma membrane protein. This is consistent with the hypothesis that WLRK proteins are receptor protein kinases localized to the cell surface. In addition, we present preliminary evidence that other disease resistance loci in wheat contain genes which are related to wlrk.  相似文献   

9.
Receptor-like protein kinases (RLKs) containing an extracellular leucine-rich repeat (eLRR) domain, a transmembrane domain and a cytoplasmic kinase domain play important roles in plant disease resistance. Simple eLRR domain proteins structurally resembling the extracellular portion of the RLKs may also participate in signalling transduction and plant defence response. Yet the molecular mechanisms and subcellular localization in regulating plant disease resistance of these simple eLRR domain proteins are still largely unclear. We provided the first experimental evidence to demonstrate the subcellular localization and trafficking of a novel simple eLRR domain protein (OsLRR1) in the endosomal pathway, using both confocal and electron microscopy. Yeast two-hybrid and in vitro pull-down assays show that OsLRR1 interacts with the rice hypersensitive-induced response protein 1 (OsHIR1) which is localized on plasma membrane. The interaction between LRR1 and HIR1 homologs was shown to be highly conserved among different plant species, suggesting a close functional relationship between the two proteins. The function of OsLRR1 in plant defence response was examined by gain-of-function tests using transgenic Arabidopsis thaliana . The protective effects of OsLRR1 against bacterial pathogen infection were shown by the alleviating of disease symptoms, lowering of pathogen titres and higher expression of defence marker genes.  相似文献   

10.
植物类受体蛋白激酶的研究进展   总被引:3,自引:0,他引:3  
植物类受体蛋白激酶(receptor-like protein kinase,RLKs)通过胞外结构域识别病原信号分子,发生磷酸化、去磷酸化反应而开启或关闭下游靶蛋白,调节植物固有免疫反应,诱导抗病防御反应.目前对植物类受体蛋白激酶的功能、信号传导和配体识别等方面的研究已成为该领域的重点.本文对近年来国内外有关植物类受体蛋白激酶的结构、功能及其在植物抗病防御反应中的作用研究进行综述,为今后进一步深入研究植物类受体蛋白激酶的生理生化功能及应用提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号