首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify some of the mechanisms involved in the high resistance to Cd2+ in the protist Euglena gracilis, we studied the effect of Cd2+ exposure on its energy and oxidative stress metabolism as well as on essential heavy metals homeostasis. In E. gracilis heterotrophic cells, as in other organisms, CdCl2 (50 μM) induced diminution in cell growth, severe oxidative stress accompanied by increased antioxidant enzyme activity and strong perturbation of the heavy metal homeostasis. However, Cd2+ exposure did not substantially modify the cellular respiratory rate or ATP intracellular level, although the activities of respiratory complexes III and IV were strongly decreased. In contrast, an enhanced capacity of the alternative oxidase (AOX) in both intact cells and isolated mitochondria was determined under Cd2+ stress; in fact, AOX activity accounted for 69-91% of total respiration. Western blotting also revealed an increased AOX content in mitochondria from Cd2+-exposed cells. Moreover, AOX was more resistant to Cd2+ inhibition than cytochrome c oxidase in mitochondria from control and Cd2+-exposed cells. Therefore, an enhanced AOX seems to be a relevant component of the resistance mechanism developed by E. gracilis against Cd2+-stress, in addition to the usual increased antioxidant enzyme activity, that enabled cells to maintain a relatively unaltered the energy status.  相似文献   

2.
3.
The effects of potassium cyanide (KCN) pretreatment on the response of cucumber (Cucumis sativus L.) plants to salt, polyethylene glycol (PEG) and cold stress were investigated in the present study. Here, we found that KCN pretreatment improved cucumber seedlings tolerance to stress conditions with maximum efficiency at a concentration of 20 µM. The results showed that pretreatment with 20 µM KCN alleviated stress‐induced oxidative damage in plant cells and clearly induced the activity of alternative oxidase (AOX) and the ethylene production. Furthermore, the structures of thylakoids and mitochondria in the KCN‐pretreated seedlings were less damaged by the stress conditions, which maintained higher total chlorophyll content, photosynthetic rate and photosystem II (PSII) proteins levels than the control. Importantly, the addition of the AOX inhibitor salicylhydroxamic acid (1 mm ; SHAM) decreased plant resistance to environmental stress and even compromised the cyanide (CN)‐enhanced stress tolerance. Therefore, our findings provide a novel role of CN in plant against environmental stress and indicate that the CN‐enhanced AOX might contribute to the reactive oxygen species (ROS) scavenging and the protection of photosystem by maintaining energy charge homoeostasis from chloroplast to mitochondria.  相似文献   

4.
The mechanisms involved in the metabolic changes induced by cold stress in isolated rat liver mitochondria were studied. Respiration, ATP synthesis, and membrane potential as well as the contents of several metabolites were determined in liver mitochondria from cold-exposed rats. At different times of cold exposure, the force-flux relationships showed net variation in flux (enhanced respiration, diminished ATP synthesis) with no associated variation in force (H+ gradient); this suggested that decoupling rather than classical uncoupling was involved in the effects of cold stress. The flux control coefficient of the H+ leak on basal respiration was slightly increased by 380 h of cold exposure. Cold stress also induced a diminution in total membrane fatty acids, Zn2+, Fe3+, ATP, and ADP/O ratios; the content of cytochromes c + c1 and b oscillated. The contents of Ca2+, Na+, Pi, and cytochromes a + a3 were not affected, whereas matrix ADP, AMP, K+, and Mg2+ were markedly increased. Basal and oleic acid-stimulated respiration of mitochondria from cold-stressed rats was inhibited by GDP, carboxyatractyloside, or albumin. These agents did not affect basal respiration in control mitochondria. Western blot analysis showed enhanced expression of a protein of about 35 kDa, presumably the uncoupling protein 2, induced by long-term cold exposure. The overall data suggest that cold stress promoted decoupling of oxidative phosphorylation, and hence, changes in several matrix metabolites, by increasing free fatty acids and the UCP2 content.  相似文献   

5.
The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, alpha-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.  相似文献   

6.
7.
8.
Alternative oxidase (AOX) plays a pivotal role in cyanide-resistance respiration in the mitochondria of plants, fungi and some protists. Here we show that AOX from thermogenic skunk cabbage successfully conferred cyanide resistance to human cells. In galactose medium, HeLa cells with mitochondria-targeted AOX proteins were found to have significantly less reactive oxygen species production in response to antimycin-A exposure, a specific inhibitor of respiratory complex III. These results suggest that skunk cabbage AOX can be used to create an alternative respiration pathway, which might be important for therapy against various mitochondrial diseases.  相似文献   

9.
ABSTRACT A study of the effect of respiratory inhibitors on O2 uptake of Euglena gracilis mitochondria, isolated from cells grown in the presence of cyanide or with ethanol as carbon source, was undertaken. The contents of cytochrome c oxidase and alternative oxidase were also determined. Inhibition of respiration by antimycin and cyanide was only partial and it was dependent on the oxidizable substrate used. Succinate oxidation was the most sensitive to cyanide whereas lactate oxidation was the most resistant. Cell growth in the presence of cyanide or with ethanol as carbon source brought about an enhanced content of alternative oxidase without a concomitant increase in cytochrome aa3 content. However, a correlation between cyanide-resistant respiration and alternative oxidase content was not found. Analysis of heme types in mitochondrial membranes revealed the absence of heme O. The data suggest the presence of an inducible alternative oxidase in Euglena mitochondria which has high resistance to cyanide and contains heme B. A close relationship between Euglena alternative oxidase and bacterial quinol oxidases containing B-type heme is proposed.  相似文献   

10.
In Aspergillus niger, a cyanide (CN)- and antimycin A-insensitive and salicylhydroxamic acid (SHAM)-sensitive respiratory pathway exists besides the cytochrome pathway and is catalyzed by the alternative oxidase (AOX). In this study, A. niger WU-2223L, a citric acid-producing strain, was cultivated in a medium containing 120 g/l of glucose, which is the concentration usually needed for citric acid production, and the effects of 2% (v/v) methanol, an inducer of citric acid, 2 microM antimycin A, and 1 mM SHAM on AOX activities and citric acid production were investigated. The AOX activity, measured as duroquinol oxidase, was localized in the purified mitochondria regardless of the presence of any additives. When WU-2223L was cultivated with antimycin A or methanol, both citric acid production and citric acid productivity, shown as the ratio of production per mycelial dry weight, increased with the increase of both the activity of AOX and the rate of CN-insensitive and SHAM-sensitive respiration. On the other hand, when WU-2223L was cultivated with SHAM, an inhibitor of AOX, the CN-insensitive and SHAM-sensitive respiration was not detected and the citric acid production and the productivity drastically decreased, although mycelial growth was not affected. These results clearly indicated that the CN-insensitive and SHAM-sensitive respiration catalyzed by AOX, localized in the mitochondria, contributed to citric acid production by A. niger.  相似文献   

11.
The effect of antimycin, myxothiazol, 2-heptyl-4-hydroxyquinoline-N-oxide, stigmatellin and cyanide on respiration, ATP synthesis, cytochrome c reductase, and membrane potential in mitochondria isolated from dark-grown Euglena cells was determined. With L-lactate as substrate, ATP synthesis was partially inhibited by antimycin, but the other four inhibitors completely abolished the process. Cyanide also inhibited the antimycin-resistant ATP synthesis. Membrane potential was collapsed (<60 mV) by cyanide and stigmatellin. However, in the presence of antimycin, a H(+)60 mV) that sufficed to drive ATP synthesis remained. Cytochrome c reductase, with L-lactate as donor, was diminished by antimycin and myxothiazol. Cytochrome bc(1) complex activity was fully inhibited by antimycin, but it was resistant to myxothiazol. Stigmatellin inhibited both L-lactate-dependent cytochrome c reductase and cytochrome bc(1) complex activities. Respiration was partially inhibited by the five inhibitors. The cyanide-resistant respiration was strongly inhibited by diphenylamine, n-propyl-gallate, salicylhydroxamic acid and disulfiram. Based on these results, a model of the respiratory chain of Euglena mitochondria is proposed, in which a quinol-cytochrome c oxidoreductase resistant to antimycin, and a quinol oxidase resistant to antimycin and cyanide are included.  相似文献   

12.
Aluminum (Al) stress represses mitochondrial respiration and produces reactive oxygen species (ROS) in plants. Mitochondrial alternative oxidase (AOX) uncouples respiration from mitochondrial ATP production and may improve plant performance under Al stress by preventing excess accumulation of ROS. We tested respiratory changes and ROS production in isolated mitochondria and whole cell of tobacco (SL, ALT 301) under Al stress. Higher capacities of AOX pathways relative to cytochrome pathways were observed in both isolated mitochondria and whole cells of ALT301 under Al stress. AOX1 when studied showed higher AOX1 expression in ALT 301 than SL cells under stress. In order to study the function of tobacco AOX gene under Al stress, we produced transformed tobacco cell lines by introducing NtAOX1 expressed under the control of the cauliflower mosaic virus (CaMV) 35 S promoter in sensitive (SL) Nicotiana tabacum L. cell lines. The enhancement of endogenous AOX1 expression and AOX protein with or without Al stress was in the order of transformed tobacco cell lines > ALT301 > wild type (SL). A decreased respiratory inhibition and reduced ROS production with a better growth capability were the significant features that characterized AOX1 transformed cell lines under Al stress. These results demonstrated that AOX plays a critical role in Al stress tolerance with an enhanced respiratory capacity, reducing mitochondrial oxidative stress burden and improving the growth capability in tobacco cells.  相似文献   

13.
We have investigated the influence of stress conditions such as incubation at 4°C and incubation in hyperoxygen atmosphere, on plant tissues. The ubiquinone (Q) content and respiratory activity of purified mitochondria was studied. The rate of respiration of mitochondria isolated from cold-treated green bell peppers (Capsicum annuum L) exceeds that of controls, but this is not so for mitochondria isolated from cold-treated cauliflower (Brassica oleracea L). Treatment with high oxygen does not alter respiration rates of cauliflower mitochondria. Analysis of kinetic data relating oxygen uptake with Q reduction in mitochondria isolated from tissue incubated at 4°C (bell peppers and cauliflowers) and at high oxygen levels (cauliflowers) reveals an increase in the total amount of Q and in the percentage of inoxidizable QH2. The effects are not invariably accompanied by an induction of the alternative oxidase (AOX). In those mitochondria where the AOX is induced (cold-treated bell pepper and cauliflower treated with high oxygen) superoxide production is lower than in the control. The role of reduced Q accumulation and AOX induction in the defense against oxidative damage is discussed.  相似文献   

14.
The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, α-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.  相似文献   

15.
Treatment of barley (Hordeum vulgare) seedlings with 400 millimolar NaCl for 3 days resulted in a reduction in plant growth and an increase in the leaf content in ions (K+ + Na+) and proline. Purified mitochondria were successfully isolated from barley leaves. Good oxidative and phosphorylative properties were observed with malate as substrate. Malate-dependent electron transport was found to be only partly inhibited by cyanide, the remaining oxygen uptake being SHAM sensitive. The properties of mitochondria from NaCl-treated barley were modified. The efficiency of phosphorylation was diminished with only a slight decrease in the oxidation rates. In both isolated mitochondria and whole leaf tissue of treated plants, the lower respiration rate was due to a lower cytochrome pathway activity. In mitochondria, the activity of the alternative pathway was not modified by salt treatment, whereas this activity was increased in whole leaf tissue. The possible participation of the alternative pathway in response to salt stress will be discussed.  相似文献   

16.
Tomato (Lycopersicon esculentum) mitochondria contain both alternative oxidase (AOX) and uncoupling protein as energy-dissipating systems that can decrease the efficiency of oxidative phosphorylation. We followed the cyanide (CN)-resistant, ATP-synthesis-sustained, and uncoupling-protein-sustained respiration of isolated mitochondria, as well as the immunologically detectable levels of uncoupling protein and AOX, during tomato fruit ripening from the mature green stage to the red stage. The AOX protein level and CN-resistant respiration of isolated mitochondria decreased with ripening from the green to the red stage. The ATP-synthesis-sustained respiration followed the same behavior. In contrast, the level of uncoupling protein and the total uncoupling-protein-sustained respiration of isolated mitochondria decreased from only the yellow stage on. We observed an acute inhibition of the CN-resistant respiration by linoleic acid in the micromolar range. These results suggest that the two energy-dissipating systems could have different roles during the ripening process.  相似文献   

17.
Formation of reactive oxygen species (ROS) in mitochondrial isolates from gill tissues of the Antarctic polar bivalve Laternula elliptica was measured fluorimetrically under in vitro conditions. When compared to the rates measured at habitat temperature (1 degrees C), significantly elevated ROS formation was found under temperature stress of 7 degrees C and higher. ROS formation correlated significantly with oxygen consumption in individual mitochondrial preparations over the entire range of experimental temperatures (1-12 degrees C). ROS generation per mg of mitochondrial protein was significantly higher in state 3 at maximal respiration and coupling to energy conservation, than in state 4+, where ATPase-activity is inhibited by oligomycin and only proton leakage is driving the residual oxygen consumption. The percent conversion of oxygen to the membrane permeant hydrogen peroxide amounted to 3.7% (state 3) and 6.5% (state 4+) at habitat temperature (1 degrees C), and to 7% (state 3) and 7.6% (state 4+) under experimental warming to 7 degrees C. This is high compared to 1-3% oxygen to ROS conversion in mammalian mitochondrial isolates and speaks for a comparatively low control of toxic oxygen formation in mitochondria of the polar bivalve. However, low metabolic rates at cold Antarctic temperatures keep absolute rates of mitochondrial ROS production low and control oxidative stress at habitat temperatures. Mitochondrial coupling started to fall beyond 3 degrees C, closely to pejus temperature (4 degrees C) of the bivalve. Accordingly, the proportion of state 4 respiration increased from below 30% at 1 degrees C to over 50% of total oxygen consumption at 7 degrees C, entailing reduced ADP/O ratios under experimental warming. Progressive mitochondrial uncoupling and formation of hazardous ROS contribute to bias mitochondrial functioning under temperature stress in vitro. Deduced from a pejus temperature, heat stress commences already at 5 degrees C, and is linked to progressive loss of phosphorylation efficiency, increased mitochondrial oxygen demand and elevated oxidative stress above pejus temperatures.  相似文献   

18.
Candida parapsilosis mitochondria contain three respiratory chains: the classical respiratory chain (CRC), a secondary parallel chain (PAR) and an “alternative” oxidative pathway (AOX). We report here the existence of similar pathways in C. albicans. To observe the capacity of each pathway to sustain yeast growth, C. albicans cells were cultured in the presence of inhibitors of these pathways. Antimycin A and KCN totally abrogated yeast growth, while rotenone did not prevent proliferation. Furthermore, rotenone promoted only partial respiratory inhibition. Lower concentrations of KCN that promote partial inhibition of respiration did not inhibit yeast growth, while partial inhibition of respiration with antimycin A did. Similarly, AOX inhibitor BHAM decreased O2 consumption slightly but completely stunted cell growth. Reactive oxygen species production and oxidized glutathione levels were enhanced in cells treated with antimycin A or BHAM, but not rotenone or KCN. These findings suggest that oxidative stress prevents C. albicans growth.  相似文献   

19.
The effects of short-term cold stress and long-term cold acclimation on the light reactions of photosynthesis were examined in vivo to assess their contributions to photosynthetic acclimation to low temperature in Arabidopsis thaliana (L.) Heynh.. All photosynthetic measurements were made at the temperature of exposure: 23 degrees C for non-acclimated plants and 5 degrees C for cold-stressed and cold-acclimated plants. Three-day cold-stress treatments at 5 degrees C inhibited light-saturated rates of CO2 assimilation and O2 evolution by approximately 75%. The 3-day exposure to 5 degrees C also increased the proportion of reduced QA by 50%, decreased the yield of PSII electron transport by 65% and decreased PSI activity by 31%. In contrast, long-term cold acclimation resulted in a strong but incomplete recovery of light-saturated photosynthesis at 5 degrees C. The rates of light-saturated CO2 and O2 gas exchange and the in vivo yield of PSII activity under light-saturating conditions were only 35-40% lower, and the relative redox state of QA only 20% lower, at 5 degrees C after cold acclimation than in controls at 23 degrees C. PSI activity showed full recovery during long-term cold acclimation. Neither short-term cold stress nor long-term cold acclimation of Arabidopsis was associated with a limitation in ATP, and both treatments resulted in an increase in the ATP/NADPH ratio. This increase in ATP/NADPH was associated with an inhibition of PSI cyclic electron transport but there was no apparent change in the Mehler reaction activity in either cold-stressed or cold-acclimated leaves. Cold acclimation also resulted in an increase in the reduction state of the stroma, as indicated by an increased total activity and activation state of NADP-dependent malate dehydrogenase, and increased light-dependent activities of the major regulatory enzymes of the oxidative pentose-phosphate pathway. We suggest that the photosynthetic capacity during cold stress as well as cold acclimation is altered by limitations at the level of consumption of reducing power in carbon metabolism.  相似文献   

20.
Aspergillus fumigatus possesses a branched mitochondrial electron transport chain, with both cyanide-sensitive and -insensitive oxygen-consumption activities. Mitochondrial reactive oxygen species mediate signaling for alternative oxidase (AOX) expression. A 1173 bp-long Afaox gene encoding a 40 kDa protein has been cloned and identified. Recombinant constructs containing the Afaox ORF were transformed into Escherichia coli and Saccharomyces cerevisiae for heterologous expression. In A. fumigatus, AOX activity and mRNA expression were both induced with menadione or paraquat, suggesting an important role of AOX under oxidative stress. Therefore, positive transformants showed a cyanide-resistant and salicylhydroxamic acid-sensitive respiration, whereas in control cells the oxygen uptake was completely inhibited after KCN addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号