首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Hybridization in flowering plants is determined in part by the rate at which animal pollinators move between species and by the effectiveness of such movements in transferring pollen. Pollinator behavior can also influence hybrid fitness by determining receipt and export of pollen. We incorporated information on pollinator effectiveness and visitation behavior into a simulation model that predicts pollen transfer between Ipomopsis aggregata, Ipomopsis tenuituba, and hybrids. These predictions were compared with estimates of pollen transfer derived from movement of fluorescent dyes in experimental plant arrays. Interspecific pollen transfer was relatively uncommon in these arrays, whereas transfer between hybrids and the parental species was at least as common as conspecific transfer. Backcrossing was asymmetrical; I. aggregata flowers frequently received mixed loads of hybrid and conspecific pollen. The simulation suggests that these patterns of pollen transfer are largely explained by the visitation sequences of hummingbird and insect pollinators, with little contribution from mechanical isolation. Pollen receipt by hybrids exceeded that of both parental species in a year when pollinators preferred to visit F(1) and F(2) hybrids and was intermediate in another year when they preferred to visit I. aggregata. This suggests that natural variation in pollination may produce spatiotemporal variation in hybridization and hybrid fitness.  相似文献   

2.
Variation in hybridization rates among contact sites of a species pair provides an opportunity for assessing the importance of individual reproductive isolating mechanisms in limiting gene flow between species and thus promoting speciation. Conspecific pollen advantage is common in angiosperms, but its importance as a reproductive isolating mechanism is uncertain. We compared the strength of conspecific pollen advantage in two Ipomopsis aggregata-I. tenuituba (Polemoniaceae) contact sites that differ in frequency of natural hybrids. We performed hand pollinations of single- and 1:1 mixed-species pollen loads, using donor and recipient plants from both contact sites. Paternity of offspring from mixed-species pollinations was determined using an allozyme marker. Donors from the high frequency hybrid site showed no conspecific pollen advantage; both species sired seeds in proportion to their fraction of the pollen load (0.5). In contrast, I. aggregata from the low frequency hybrid site sired 70-85% of offspring on recipients from both sites. These results suggest that pollen interactions can influence the level of natural hybridization. They also suggest the importance of geographic variation in reproductive isolation, which should be considered in studies of biological invasions and exposure of engineered crops to wild relatives.  相似文献   

3.
The frequency of hybrid formation in angiosperms depends on how often heterospecific pollen is transferred to the stigma and on the success of that heterospecific pollen at fertilizing ovules. Even if heterospecific pollen is capable of effecting fertilization it may perform poorly when conspecific pollen is also available on the stigma. We applied pollen mixtures to stigmas to determine how pollen interactions affect siring success and the frequency of hybrid formation between two species of Ipomopsis (Polemoniaceae) in Colorado. Plants of both parental species and natural hybrids were pollinated with I. aggregata and I. tenuituba pollen in ratios of 100:0, 80:20, 50:50, 20:80, and 0:100 by mass. Plants were homozygous for different alleles at an isozyme marker, allowing us to distinguish the type of pollen parent for 2166 viable seeds from 273 fruits. In contrast to studies of many other hybridizing taxa, there was no evidence of an advantage to conspecific pollen, nor did composition of the stigmatic pollen load affect seed set. Instead, the frequency of seeds sired by a given species was proportional to its representation in the pollen load. In this hybrid zone, both the frequency of first-generation hybrid formation and the relative male fitness of the two parental species should be predictable from the rates of pollen transfer to stigmas.  相似文献   

4.
The Ipomopsis aggregata species complex (Polemoniaceae) includes species pairs that hybridize readily in nature as well as pairs that meet along contact zones with no apparent hybridization. Artificial hybrids can be made between I. aggregata and I. arizonica, yet morphological intermediates between these two species have not been observed in natural populations. This apparent lack of hybridization is perplexing given that plants of the two species often grow within a few metres of each other and both species have red flowers visited by the same species of hummingbirds. We used trained hummingbirds to examine pollen transfer within and between species. We also hand-pollinated flowers to examine paternal success of heterospecific and conspecific pollen, testing paternity with electrophoretic examination of seeds. Hummingbirds were not simply better at transferring pollen within than between species. Instead, I. arizonica was a better pollen donor so that considerable pollen transfer was observed from I. arizonica to I. aggregata, but very little in the opposite direction. Conversely, once pollen arrived at stigmas, I. arizonica pollen performed very poorly on I. aggregata pistils. However, pollen from I. aggregata could, in some cases, sire seeds on I. arizonica. We hypothesize that hybrids are scarce in nature, in part, because of asymmetric barriers to reproduction: little pollen transfer in one direction and poor pollen performance in the other.  相似文献   

5.
Speciation often involves the evolution of numerous prezygotic and postzygotic isolating barriers between divergent populations. Detailed knowledge of the strength and nature of those barriers provides insight into ecological and genetic factors that directly or indirectly influenced their origin, and may help predict whether they will be maintained in the face of sympatric hybridization and introgression. We estimated the magnitude of pre- and postzygotic barriers between naturally occurring sympatric populations of Mimulus guttatus and M. nasutus. Prezygotic barriers, including divergent flowering phenologies, differential pollen production, mating system isolation, and conspecific pollen precedence, act asymmetrically to completely prevent the formation of F(1) hybrids among seeds produced by M. guttatus (F(1)g), and reduce F(1) hybrid production among seeds produced by M. nasutus (F(1)n) to only about 1%. Postzygotic isolation is also asymmetric: in field experiments, F(1)g but not F(1)n hybrids had significantly reduced germination rates and survivorship compared to parental species. Both hybrid classes had flower, pollen, and seed production values within the range of parental values. Despite the moderate degree of F(1)g hybrid inviability, postzygotic isolation contributes very little to the total isolation between these species in the wild. We also found that F(1) hybrid flowering phenology overlapped more with M. guttatus than M. nasutus. These results, taken together, suggest greater potential for introgression from M. nasutus to M. guttatus than for the reverse direction. We also address problems with commonly used indices of isolation, discuss difficulties in calculating meaningful measures of reproductive isolation when barriers are asymmetric, and propose novel measures of prezygotic isolation that are consistent with postzygotic measures.  相似文献   

6.
Hybridization between interfertile, sympatric or parapatric, plant species can be reduced significantly by conspecific pollen advantage (CPA), whereby conspecific pollen has an advantage over heterospecific pollen in terms of ovule fertilization. We examined CPA in two interfertile species of Senecio, S. aethnensis, and S. chrysanthemifolius (Asteraceae), which form a hybrid zone on Mt. Etna, Sicily. Individuals of both species were pollinated with pollen mixtures containing 0, 25, 50, 75, or 100% heterospecific pollen, and offspring were genotyped to determine if they were products of conspecific or heterospecific pollen fertilizing the ovules. The mean proportion of hybrid offspring produced on S. aethnensis plants was not significantly different to that expected based on the proportion of heterospecific pollen applied to the flower head. However, S. chrysanthemifolius mother plants showed moderate CPA, with the proportion of hybrid offspring significantly less than expected. Seed set or seed germination was not reduced, hence the CPA found for S. chrysanthemifolius acts before ovule fertilization. The consequences of asymmetry in CPA on the reproductive isolation of S. aethnensis are briefly discussed, along with other mechanisms that may play a role in the maintenance of the hybrid zone on Mt. Etna.  相似文献   

7.
Hybrid bridges to gene flow: a case study in milkweeds (Asclepias)   总被引:1,自引:0,他引:1  
Natural hybridization occurs throughout areas of sympatry for the North American milkweeds Asclepias exaltata and A. syriaca (Asclepiadaceae), even though the formation of F1 hybrid seed is a rare event. For introgressive hybridization to proceed, F1 and advanced hybrids must be released from reproductive barriers and successfully mate with one or both parental species. I investigated the mating system of natural hybrids between A. exaltata and A. syriaca in three populations in Shenandoah National Park, Virginia. Allozyme data and a maximum-likelihood procedure were used to estimate the frequency of six genotypic classes (parentals, F1, F2, and backcrosses) of the hybridizing populations, the pollinia received by hybrid plants, and the paternal parents of seeds produced by hybrids. F1 hybrids, backcross A. syriaca, and parental A. syriaca individuals were common in three hybrid populations. Even though self-pollinations and interhybrid pollinations were common, F2 seed production and the occurrence of F2 individuals were rare in hybrid populations. Hybrid plants received more pollen from A. syriaca than A. exaltata, which resulted in the production of more backcross-A. syriaca seed than backcross-A. exaltata seed. Asclepias exaltata was rare in the hybrid populations, but A. exaltata pollinia were received by hybrids and this species sired between 15% and 36% of the seeds produced on hybrids. The potential for introgression with A. exaltata populations is lower because this species is unsuccessful as the maternal parent in interspecific and backcross hand-pollinations. The asymetry of hybridization with A. syriaca as the maternal parent is further supported by the incorporation of maternally inherited chloroplast DNA markers in hybrids. Hybrid milkweeds frequently backcross with both parental species and may be released from the reproductive barriers that limit the formation of F1 hybrids in natural populations. The direction of interspecific gene flow and introgression in milkweeds is influenced by the reproductive biology of hybrids, the constituency of the surrounding population, and failure of some crosses to produce seeds. Finally, introgressive hybridization remains an important evolutionary force even when the initial formation of F1 hybrids in natural populations is rare.  相似文献   

8.
Flower color is often viewed as a trait that signals rewards to pollinators, such that the relationship between flower color and plant fitness might result from its association with another trait. We used experimental manipulations of flower color and nectar reward to dissociate the natural character correlations present in a hybrid zone between Ipomopsis aggregata and Ipomopsis tenuituba. Isozyme markers were used to follow the male and female reproductive success of these engineered phenotypes. One field experiment compared fitnesses of I. aggregata plants that varied only in flower color. Plants with flowers painted red received more hummingbird visits and sired more seeds than did plants with flowers painted pink or white to match those of hybrids and I. tenuituba. Our second field experiment compared fitnesses of I. aggregata, I. tenuituba, and hybrid plants in an unmanipulated array and in a second array where all flowers were painted red. In the unmanipulated array, I. aggregata received more hummingbird visits, set more seeds per flower, and sired more seeds per flower. These fitness differences largely disappeared when the color differences were eliminated. The higher male fitness of I. aggregata was due to its very high success at siring seeds on conspecific recipients. On both I. tenuituba and hybrid recipients, hybrid plants sired the most seeds, despite showing lower pollen fertility than I. aggregata in mixed donor pollinations in the greenhouse. Ipomopsis tenuituba had a fitness of only 13% relative to I. aggregata when traits varied naturally, compared to a fitness of 36% for white relative to red flowers when other traits were held constant.  相似文献   

9.
Although rarely tested, it is often assumed that interspecific competition results in the divergence of traits related to resource use. Using a plant-pollinator system as a model, I tested the prediction the presence of a competitor for pollination influences the strength and/or direction of pollinator-mediated selection on floral traits. I measured phenotypic selection via female fitness on five floral traits of Ipomopsis aggregata in seven populations. Four contained only conspecifics (I only) and three also contained the competitor Castilleja linariaefolia (C + I). Directional selection via fruits/plant and conspecific pollen deposited/flower on corolla length was positive and significantly stronger in C + I populations. This difference in selection was apparently driven by interpopulation variation in the degree to which reproduction of I. aggregata was pollen limited. Consistent with expectations of interspecific competition, I. aggregata plants in C + I populations received less conspecific pollen per flower and set fewer seeds per fruit and fruits per plant than those in I only populations. Ipomopsis aggregata's corollas were also significantly longer in C + I populations, suggesting that there had been a response to a similar selective regime in past generations. Phenotypic correlations between corolla length and width, which determine the variation in I. aggregata's flower shape, were significantly weaker in C + I populations. These data suggest that competition for pollination can influence the strength of selection on and patterns of correlations among floral traits of I. aggregata. If I. aggregata populations with and without competitors for pollination are linked by gene flow, then measuring selection in competitive and noncompetitive environments maybe necessary to accurately predict how floral traits will evolve.  相似文献   

10.
Pollinator-mediated reproductive isolation is often a principal factor in determining the rate of hybridization between plant species. Pollinator preference and constancy can reduce interspecific pollen transfer between otherwise interfertile, coflowering species. The importance of this ethological isolation can be assessed by comparing the strength of preference and constancy of pollinators in contact sites that differ in the frequency of hybrid individuals. We observed visitation by hummingbirds and hawkmoths in natural single-species patches and artificial mixed-species arrays in two Ipomopsis aggregata/I. tenuituba contact sites-one with few hybrids, and one in which hybrids are abundant. Pollinator preference and constancy were stronger at the low-frequency hybrid site, especially for hawkmoths (Hyles lineata). Hawkmoths at the low-frequency hybrid site showed significant preference and constancy for I. tenuituba, while at the high-frequency site hawkmoths visited both species equally. One hypothesis that might explain these differences in hawkmoth foraging is that warmer nights at the low-frequency hybrid site allow for nocturnal foraging where the light-colored corollas of I. tenuituba have a visibility advantage. These differences in hawkmoth behavior might in turn affect hummingbirds differently at the two sites, through changes in nectar resources, leading to greater pollinator-mediated isolation at the low-frequency hybrid site. Our results suggest that differences in pollinator behaviors between sites can have both direct and indirect effects on hybridization rates between plant species.  相似文献   

11.
This paper considers the extent to which differences in pollen tube growth rates can provide prezygotic reproductive isolation between Mimulus nasutus and its presumed progenitor, Mimulus guttatus . Mimulus nasutus is partially cleistogamous, but its larger chasmogamous flowers offer appreciable opportunity for outcrossing. Mimulus nasutus was found to have smaller pollen grains and shorter styles than M. guttatus . No differences were observed in pollen grain germination on conspecific and heterospecific stigmas. However, pollen tube growth rates of M. nasutus were found to be much slower than those of M. guttatus in the styles of that species. Consequently, any M. nasutus pollen transferred to an M. guttatus stigma was found to be competitively disadvantaged in an M. gutattus style. By contrast, no difference in pollen tube growth rate was detected between the species when growing in M. nasutus styles, possibly because M. nasutus styles are unable to support fast pollen tube growth. We tested the prediction from the pollen tube studies that a 50:50 mix of M. guttatus and M. nasutus pollen would produce 50% hybrid seeds when M. nasutus was the maternal parent, and near to 0% hybrid seed when M. guttatus was the maternal parent. The results were found to support this prediction. We conclude that pollen–pistil interactions can effect strong reproductive isolation between these species, as M. guttatus pollen tubes have a competitive advantage over those of M. nasutus in an M. guttatus style, but not in an M. nasutus style.  相似文献   

12.
Christina M. Caruso 《Oikos》2001,94(2):295-302
Interactions for pollination between co-flowering plant species have been hypothesized to shape the evolution of their floral traits, but this hypothesis has rarely been tested. I tested the prediction that the presence of a co-flowering plant species influences the strength and/or direction of pollinator-mediated selection on floral traits. I measured phenotypic selection via female fitness on four floral traits of Ipomopsis aggregata in five populations. Three contained only conspecifics ( I only ) and two also contained the co-flowering species Penstemon barbatus ( P + I ). Directional selection via fruits/plant on corolla length and width differed in both strength and direction between P + I and I only populations. On average, selection on corolla length and width (1) was stronger in P + I than I only populations and (2) was consistently negative in P + I populations, but consistently positive in I only populations. However, these differences in selection on I . aggregata between P + I and I only populations were not caused by interactions for pollination with P . barbatus . Although plants in P + I populations received approximately 31% less conspecific pollen/flower than plants in I only populations, this difference in pollination did not translate into differences in reproductive success, which indicates that P . barbatus and I . aggregata do not strongly compete for pollination. In addition, selection via fruits/plant and conspecific pollen deposited/flower was not congruent. For example, selection on corolla length via pollen/flower was uniformly positive and did not differ between P + I and I only populations. These data suggest that the presence of P . barbatus does influence selection on floral traits of I . aggregata , but not by influencing pollination. Instead, differences in selection between P + I and I only populations appear to be the result of post-pollination modification of selection by a factor correlated with the presence of P . barbatus .  相似文献   

13.
Evolutionists have long recognized the role of reproductive isolation in speciation, but the relative contributions of different reproductive barriers are poorly understood. We examined the nature of isolation between Mimulus lewisii and M. cardinalis, sister species of monkeyflowers. Studied reproductive barriers include: ecogeographic isolation; pollinator isolation (pollinator fidelity in a natural mixed population); pollen competition (seed set and hybrid production from experimental interspecific, intraspecific, and mixed pollinations in the greenhouse); and relative hybrid fitness (germination, survivorship, percent flowering, biomass, pollen viability, and seed mass in the greenhouse). Additionally, the rate of hybridization in nature was estimated from seed collections in a sympatric population. We found substantial reproductive barriers at multiple stages in the life history of M. lewisii and M. cardinalis. Using range maps constructed from herbarium collections, we estimated that the different ecogeographic distributions of the species result in 58.7% reproductive isolation. Mimulus lewisii and M. cardinalis are visited by different pollinators, and in a region of sympatry 97.6% of pollinator foraging bouts were specific to one species or the other. In the greenhouse, interspecific pollinations generated nearly 50% fewer seeds than intraspecific controls. Mixed pollinations of M. cardinalis flowers yielded >75% parentals even when only one-quarter of the pollen treatment consisted of M. cardinalis pollen. In contrast, both species had similar siring success on M. lewisii flowers. The observed 99.915% occurrence of parental M. lewisii and M. cardinalis in seeds collected from a sympatric population is nearly identical to that expected, based upon our field observations of pollinator behavior and our laboratory experiments of pollen competition. F1 hybrids exhibited reduced germination rates, high survivorship and reproduction, and low pollen and ovule fertility. In aggregate, the studied reproductive barriers prevent, on average, 99.87% of gene flow, with most reproductive isolation occurring prior to hybrid formation. Our results suggest that ecological factors resulting from adaptive divergence are the primary isolating barriers in this system. Additional studies of taxa at varying degrees of evolutionary divergence are needed to identify the relative importance of pre- and postzygotic isolating mechanisms in speciation.  相似文献   

14.
Natural hybridization is increasingly recognized as an important process for the ecology and evolution of natural plant populations and species. There is a great need to initiate more studies based on natural populations in order to elucidate the possible role of hybrids in nature. The reproductive success of early generation hybrids can make or break hybrid lineages and may determine the genetic structure of hybrid swarms or the potential for gene flow through future generations, but studies of hybrid reproductive success are lacking. Here we measured components of male and female reproductive success in Senecio jacobaea and S. aquaticus (Asteraceae) species and F(1) hybrids between these species under laboratory conditions, and we measured reproductive output from crosses producing F(1), F(2), and backcross (BC) generation hybrids. F(1) hybrids were readily produced, and on average, the success of crosses producing subsequent generations (F(2), BC) decreased (though remained substantial), but the success of crosses was highly dependent on the genotypes involved. Also, F(1) hybrids were bigger, produced more flowers, and therefore produced more pollen than parental plants. Finally, crosses between parents were asymmetrical, such that S. aquaticus produced more and larger F(1) seeds than did S. jacobaea.  相似文献   

15.
We genetically analysed cordgrass plants and seedlings throughout the San Francisco, California, USA, estuary and found that hybrids between exotic Spartina alterniflora and native Spartina foliosa are the principal cordgrass invaders and colonizers. We hypothesized that this was due to higher seed set and siring ability by hybrids relative to the native species; too few alien parents remained in San Francisco Bay for our comparative studies. Hybrid seed comprised 91% to 98% of that set in the marsh study plants over the 2 years of the study. Total viable pollen production by hybrid plants was 400 times that of the native plants. Seed and pollen production were highly skewed towards a few hybrid genotypes. In addition to seed produced by hybrid plants, hybrid seed was produced by S. foliosa due to hybrid backcrossing. While the greatest advantage for hybrids was in pollen and seed production, hybrid seeds germinated, and seedlings survived and grew as well or better than the native species. As native S. foliosa becomes increasingly rare, hybrid seed floating on the tides will predominate, overwhelming recruitment sites and resulting in further colonization by hybrids. In an evolutionary context, hybrids with exceptional pollen and seed production will be initially favoured by natural selection, leading to the evolution of even more fertile hybrid genotypes.  相似文献   

16.
Spatial variation in natural selection may play an important role in determining the genetic structure of hybridizing populations. Previous studies have found that F1 hybrids between naturally hybridizing Ipomopsis aggregata and Ipomopsis tenuituba in central Colorado differ in fitness depending on both genotype and environment: hybrids had higher survival when I. aggregata was the maternal parent, except in the centre of the hybrid zone where both hybrid types had high survival. Here, we developed both maternally (cpDNA PCR-RFLP) and biparentally inherited (nuclear AFLP) species-diagnostic markers to characterize the spatial genetic structure of the natural Ipomopsis hybrid zone, and tested the prediction that the majority of natural hybrids have I. aggregata cytoplasm, except in areas near the centre of the hybrid zone. Analyses of 352 individuals from across the hybrid zone indicate that cytoplasmic gene flow is bidirectional, but contrary to expectation, most plants in the hybrid zone have I. tenuituba cytoplasm. This cytotype distribution is consistent with a hybrid zone in historical transition, with I. aggregata nuclear genes advancing into the contact zone. Further, nuclear data show a much more gradual cline than cpDNA markers that is consistent with morphological patterns across the hybrid populations. A mixture of environment- and pollinator-mediated selection may contribute to the current genetic structure of this hybrid system.  相似文献   

17.
In animal-pollinated plants, pollinator preferences for divergent floral forms can lead to partial reproductive isolation. We describe regions of plant genomes that affect pollinator preferences for two species of Louisiana Irises, Iris brevicaulis and Iris fulva, and their artificial hybrids. Iris brevicaulis and I. fulva possess bee and bird-pollination syndromes, respectively. Hummingbirds preferred I. fulva and under-visited both I. brevicaulis and backcrosses toward this species. Lepidopterans preferred I. fulva and backcrosses toward I. fulva, but also under-visited I. brevicaulis and I. brevicaulis backcrosses. Bumblebees preferred I. brevicaulis and F1 hybrids and rarely visited I. fulva. Although all three pollen vectors preferred one or the other species, these preferences did not prevent visitation to other hybrid/parental classes. Quantitative trait locus (QTL) mapping, in reciprocal BC1 mapping populations, defined the genetic architecture of loci that affected pollinator behavior. We detected six and nine QTLs that affected pollinator visitation rates in the BCIb and BCIf mapping populations, respectively, with as many as three QTLs detected for each trait. Overall, this study reflects the possible role of quantitative genetic factors in determining (1) reproductive isolation, (2) the pattern of pollinator-mediated genetic exchange, and thus (3) hybrid zone evolution.  相似文献   

18.
Differences in pollen tube growth rates (certation) between heterospecific (foreign) and conspecific pollen may strongly influence whether hybrid offspring are produced after mixed pollen loads are delivered to a stigma. For both members of a sympatric species pair, Hibiscus moscheutos and H. laevis, pollination by pure loads of foreign pollen resulted in fruit set that was not significantly different from conspecific pollination, indicating that pure loads of foreign pollen could readily result in hybrid offspring. However, the number of seeds per fruit from pure foreign pollinations was significantly less than that of pure conspecific pollination. Simultaneous mixed pollination resulted in a proportion of hybrid seeds (detected by an electrophoretic marker enzyme) that was significantly lower than expected based upon the capacity of foreign pollen to effect fertilization when applied in pure pollinations. After these 50/50% pollen mixtures were applied to stigmas, 8.0 and 7.4% hybrids were produced when H. moscheutos and H. laevis were the ovule parents, respectively. For these Hibiscus species, pollen competition appears to function as a barrier to hybridization that is of moderate intensity compared with similar barriers occurring between other recently studied sympatric species pairs.  相似文献   

19.
The identification and quantification of the relative importance of reproductive isolating barriers is of fundamental importance to understand species maintenance in the face of interspecific gene flow between hybridising species. Yet, such assessments require extensive experimental fertilisations that are particularly difficult when dealing with more than two hybridising and long-generation-time species such as oaks. Here, we quantify the relative contribution of four postmating reproductive isolating barriers consisting of two prezygotic barriers (gametic incompatibility, conspecific pollen precedence) and two postzygotic barriers (germination rate, early survival) from extensively controlled pollinations between four oak species (Quercus robur, Quercus petraea, Quercus pubescens and Quercus pyrenaica) that have been shown to frequently hybridise in natural populations. We found high variation in the strength of total reproductive isolation between species, ranging from total reproductive isolation to advantage toward hybrid formation. As previously found, Q. robur pollen was unable to fertilise Q. petraea due to a strong reproductive isolating mechanism. On the contrary, Q. pubescens pollen was more efficient at fertilising Q. petraea than conspecific pollen. Overall, prezygotic barriers contribute far more than postzygotic barriers to isolate species reproductively, suggesting a role for reinforcement in the development of prezygotic barriers. Conspecific pollen precedence reduced hybrid formation when pollen competition was allowed; however, presence of conspecific pollen did not totally prevent hybridization. Our results suggest that pollen competition depends on multiple ecological and environmental parameters, including species local abundance, and that it may be of uppermost importance to understand interspecific gene flow among natural multispecies populations.  相似文献   

20.
The frequency of hybrid formation in angiosperms depends on how and when heterospecific pollen is transferred to the stigma, and on the success of that heterospecific pollen at fertilising ovules. We applied pollen mixtures to stigmas to determine how pollen interactions affect siring success and the frequency of hybrid formation between two species of Mediterranean deceptive orchid. Plants of Orchis italica and O. anthropophora were pollinated with conspecific and heterospecific pollen (first conspecific pollen then heterospecific pollen and vice versa) and molecular analysis was used to check the paternity of the seeds produced. In this pair of Mediterranean orchids, competition between conspecific and heterospecific pollen functions as a post‐pollination pre‐zygotic barrier limiting the frequency of the formation of hybrids in nature. Flowers pollinated with heterospecific pollen can remain receptive for the arrival of conspecific pollen for a long time. There is always an advantage of conspecific pollen for fruit formation, whether it comes before or after heterospecific pollen, because it overtakes the heterospecific pollen. The conspecific pollen advantage exhibited in O. italica and O. anthropophora is likely to result from the reduced germination of heterospecific pollen or retarded growth of heterospecific pollen tubes in the stigma and ovary. Overall, the results indicate that our hybrid zone represents a phenomenon of little evolutionary consequence, and the conspecific pollen advantage maintains the genetic integrity of the parental species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号