首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 861 毫秒
1.
The purpose of the present study was to investigate the participation of the motor proteins kinesin and dynein in axonal transport of neurofilaments (NF) in cultured dorsal root ganglia neurons. Therefore, we performed live-recording studies of the green fluorescent protein-tagged neurofilament M (GFP-NF-M) to assay transport processes in neurons. Co-localization studies revealed that GFP-NF-M was capable to build a functional NF network with other NF subunits, including phosphorylated heavy neurofilaments (NF-H-PH). Time-lapse recordings using confocal laser scanning microscopy exhibited fast transport of NF dots in anterograde and retrograde direction through a photobleached gap. Following microinjection of anti-kinesin antibodies or colchicine treatment an impairment of anterograde as well as retrograde NF transport was observed during live-recording experiments. In contrast, microinjection of anti-dynein antibodies only impaired retrograde transport of NF whereas the anterograde movement of GFP-NF-M was unaffected. Treatment of the cells with unspecific antibodies had no effect.  相似文献   

2.
Dynein and kinesin have been implicated as the molecular motors that are responsible for the fast transport of axonal membranous organelles and vesicles. Experiments performed in vitro with partially reconstituted preparations have led to the hypothesis that kinesin moves organelles in the anterograde direction and dynein moves them in the retrograde direction. However, the molecular basis of transport directionality remains unclear. In the experiments described here, carboxylated fluorescent beads were injected into living Mauthner axons of lamprey and the beads were observed to move in both the anterograde and retrograde directions. The bead movement in both directions required intact microtubules, occurred at velocities approaching organelle fast transport in vivo, and was inhibited by vanadate at concentrations that inhibit organelle fast transport. When living axons were injected with micromolar concentrations of vanadate and irradiated at 365 nm prior to bead injections, a treatment that results in the V1 photolysis of dynein, the retrograde movement of the beads was specifically abolished. Neither the ultraviolet irradiation alone nor the vanadate alone produced the retrograde-specific inhibition. These results support the hypothesis that dynein is required for retrograde, but not anterograde, transport in vivo. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Recent studies have shown that the transport of microtubules (MTs) and neurofilaments (NFs) within the axon is rapid, infrequent, asynchronous, and bidirectional. Here, we used RNA interference to investigate the role of cytoplasmic dynein in powering these transport events. To reveal transport of MTs and NFs, we expressed EGFP-tagged tubulin or NF proteins in cultured rat sympathetic neurons and performed live-cell imaging of the fluorescent cytoskeletal elements in photobleached regions of the axon. The occurrence of anterograde MT and retrograde NF movements was significantly diminished in neurons that had been depleted of dynein heavy chain, whereas the occurrence of retrograde MT and anterograde NF movements was unaffected. These results support a cargo model for NF transport and a sliding filament model for MT transport.  相似文献   

4.
Recent studies demonstrate co-localization of kinesin with neurofilament (NF) subunits in culture and suggest that kinesin participates in NF subunit distribution. We sought to determine whether kinesin was also associated with NF subunits in situ. Axonal transport of NF subunits in mouse optic nerve was perturbed by the microtubule (MT)-depolymerizing drug vinblastine, indicating that NF transport was dependent upon MT dynamics. Kinesin co-precipitated during immunoprecipitation of NF subunits from optic nerve. The association of NFs and kinesin was regulated by NF phosphorylation, since (1) NF subunits bearing developmentally delayed phospho-epitopes did not co-purify in a microtubule motor preparation from CNS while less phosphorylated forms did; (2) subunits bearing these phospho-epitopes were selectively not co-precipitated with kinesin; and (3) phosphorylation under cell-free conditions diminished the association of NF subunits with kinesin. The nature and extent of this association was further examined by intravitreal injection of (35)S-methionine and monitoring NF subunit transport along optic axons. As previously described by several laboratories, the wave of NF subunits underwent a progressive broadening during continued transport. The front, but not the trail, of this broadening wave of NF subunits was co-precipitated with kinesin, indicating that (1) the fastest-moving NFs were associated with kinesin, and (2) that dissociation from kinesin may foster trailing of NF subunits during continued transport. These data suggest that kinesin participates in NF axonal transport either by directly translocating NFs and/or by linking NFs to transporting MTs. Both Triton-soluble as well as cytoskeleton-associated NF subunits were co-precipitated with kinesin; these data are considered in terms of the form(s) in which NF subunits undergo axonal transport.  相似文献   

5.
In axons, organelles move away from (anterograde) and toward (retrograde) the cell body along microtubules. Previous studies have provided compelling evidence that conventional kinesin is a major motor for anterograde fast axonal transport. It is reasonable to expect that cytoplasmic dynein is a fast retrograde motor, but relatively few tests of dynein function have been reported with neurons of intact organisms. In extruded axoplasm, antibody disruption of kinesin or the dynactin complex (a dynein activator) inhibits both retrograde and anterograde transport. We have tested the functions of the cytoplasmic dynein heavy chain (cDhc64C) and the p150(Glued) (Glued) component of the dynactin complex with the use of genetic techniques in Drosophila. cDhc64C and Glued mutations disrupt fast organelle transport in both directions. The mutant phenotypes, larval posterior paralysis and axonal swellings filled with retrograde and anterograde cargoes, were similar to those caused by kinesin mutations. Why do specific disruptions of unidirectional motor systems cause bidirectional defects? Direct protein interactions of kinesin with dynein heavy chain and p150(Glued) were not detected. However, strong dominant genetic interactions between kinesin, dynein, and dynactin complex mutations in axonal transport were observed. The genetic interactions between kinesin and either Glued or cDhc64C mutations were stronger than those between Glued and cDhc64C mutations themselves. The shared bidirectional disruption phenotypes and the dominant genetic interactions demonstrate that cytoplasmic dynein, the dynactin complex, and conventional kinesin are interdependent in fast axonal transport.  相似文献   

6.
Shea  Thomas B. 《Brain Cell Biology》2000,29(11-12):873-887
The recent demonstration that the axonal transport motors kinesin and dynein participate in axonal transport of neurofilaments (NFs), and that the association of NFs with these motors is regulated by phosphorylation provides new insight into several aspects of axonal transport and NF biology. This review juxtaposes older and more recent findings on NF dynamics, and speculates on the organization of axonal NFs as suggested by real-time analyses of NF transport.  相似文献   

7.
Overexpression of tau compromises axonal transport and induces retraction of growing neurites. We tested the hypothesis that increased stability provided by neurofilaments (NFs) may prevent axonal retraction. NB2a/d1 cells were differentiated for 3 days, at which time phosphorylated NFs appear and for 14 days, which induces continued neurite elongation and further phospho-NF accumulation. Cultures were transfected with a construct that expresses full-length, 4-repeat tau. Consistent with prior studies, overexpression of tau induced retraction of day three axonal neurites even following treatment with the microtubule-stabilizing drug taxol. Axonal neurites of day 14 cells were more resistant to tau-mediated retraction. To test whether or not this resistance was derived from their additional NF content, day 3 cultures were co-transfected with constructs expressing tau and NF-M (which increases overall axonal NFs). Overexpression of NF-M attenuated tau-mediated retraction of day 3 axonal neurites. By contrast, co-transfection with constructs expressing tau and vimentin (which increases axonal neurites length) did not attenuate tau-mediated neurite retraction. Co-precipitation experiments indicate that tau is a cargo of kinesin, and that tau overexpression may displace other kinesin-based cargo, including both critical cytoskeletal proteins and organelles. However, cultures simultaneously transfected with constructs expressing NF-M and tau, the level of examined vesicles was maintained. These collectively indicate that NFs stabilize developing axonal neurites and can counteract the destabilizing force resulting from overexpression of tau, and underscore that the development and stabilization of axonal neurites is dependent upon a balance of cytoskeletal elements.  相似文献   

8.
To address questions about mechanisms of filament-based organelle transport, a system was developed to image and track mitochondria in an intact Drosophila nervous system. Mutant analyses suggest that the primary motors for mitochondrial movement in larval motor axons are kinesin-1 (anterograde) and cytoplasmic dynein (retrograde), and interestingly that kinesin-1 is critical for retrograde transport by dynein. During transport, there was little evidence that force production by the two opposing motors was competitive, suggesting a mechanism for alternate coordination. Tests of the possible coordination factor P150(Glued) suggested that it indeed influenced both motors on axonal mitochondria, but there was no evidence that its function was critical for the motor coordination mechanism. Observation of organelle-filled axonal swellings ("organelle jams" or "clogs") caused by kinesin and dynein mutations showed that mitochondria could move vigorously within and pass through them, indicating that they were not the simple steric transport blockades suggested previously. We speculate that axonal swellings may instead reflect sites of autophagocytosis of senescent mitochondria that are stranded in axons by retrograde transport failure; a protective process aimed at suppressing cell death signals and neurodegeneration.  相似文献   

9.
To test the hypothesis that fast anterograde molecular motor proteins power the slow axonal transport of neurofilaments (NFs), we used homologous recombination to generate mice lacking the neuronal-specific conventional kinesin heavy chain, KIF5A. Because null KIF5A mutants die immediately after birth, a synapsin-promoted Cre-recombinase transgene was used to direct inactivation of KIF5A in neurons postnatally. Three fourths of such mutant mice exhibited seizures and death at around 3 wk of age; the remaining animals survived to 3 mo or longer. In young mutant animals, fast axonal transport appeared to be intact, but NF-H, as well as NF-M and NF-L, accumulated in the cell bodies of peripheral sensory neurons accompanied by a reduction in sensory axon caliber. Older animals also developed age-dependent sensory neuron degeneration, an accumulation of NF subunits in cell bodies and a reduction in axons, loss of large caliber axons, and hind limb paralysis. These data support the hypothesis that a conventional kinesin plays a role in the microtubule-dependent slow axonal transport of at least one cargo, the NF proteins.  相似文献   

10.
Neurofilaments (NFs) are classically considered to transport in a primarily anterograde direction along axons, and to undergo bulk degradation within the synapse or growth cone (GC). We compared overall NF protein distribution with that of newly expressed NF subunits within NB2a/d1 cells by transfection with a construct encoding green fluorescent protein (GFP) conjugated NF-M subunits. GCs lacked phosphorylated NF epitopes, and steady-state levels of non-phosphosphorylated NF subunits within GC were markedly reduced compared to those of neurite shaft as indicated by conventional immunofluorescence. However, GCs contained significant levels of GFP-tagged subunits in the form of punctate or short filamentous structures that in some cases exceeded that visualized along the shaft itself, suggesting that GCs contained a relatively higher concentration of newly synthesized subunits. GFP-tagged NF subunits within GCs co-localized with non-phosphorylated NF immunoreactivity. GFP-tagged subunits were observed within GC filopodia in which steady-state levels of NF subunits were too low to be detected by conventional immunofluorescence. Selective localization of fluorescein versus rhodamine fluorescene was observed within GCs following expression of NF-M conjugated to DsRed1-E5, which shifts from fluorescein to rhodamine fluorescence within hours after expression; axonal shafts contained a more even distribution of fluorescein and rhodamine fluorescence, further indicating that GCs contained relatively higher levels of the most-recently expressed subunits. GFP-tagged structures were rapidly extracted from GCs under conditions that preserved axonal structures. These short filamentous and punctate structures underwent rapid bi-directional movement within GCs. Movement of GFP-tagged structures within GCs ceased following application of nocodazole, cytochalasin B, and the kinase inhibitor olomoucine, indicating that their motility was dependent upon microtubules and actin and, moreover, was due to active transport rather than simple diffusion. Treatment with the protease inhibitor calpeptin increased overall NF subunits, but increased those within the GC to a greater extent than those along the shaft, indicating that subunits in the GC undergo more rapid turnover than do those within the shaft. Some GCs contained coiled aggregates of GFP-tagged NFs that appeared to be contiguous with axonal NFs. NFs extended from these aggregates into the advancing GC as axonal neurites elongated. These data are consistent with the presence of a population of dynamic NF subunits within GCs that is apparently capable of participating in regional filament formation during axonal elongation, and support the notion that NF polymerization and transport need not necessarily occur in a uniform proximal-distal manner.  相似文献   

11.
Transport of material and signals between extensive neuronal processes and the cell body is essential to neuronal physiology and survival. Slowing of axonal transport has been shown to occur before the onset of symptoms in amyotrophic lateral sclerosis (ALS). We have previously shown that several familial ALS-linked copper–zinc superoxide dismutase (SOD1) mutants (A4V, G85R, and G93A) interacted and colocalized with the retrograde dynein–dynactin motor complex in cultured cells and affected tissues of ALS mice. We also found that the interaction between mutant SOD1 and the dynein motor played a critical role in the formation of large inclusions containing mutant SOD1. In this study, we showed that, in contrast to the dynein situation, mutant SOD1 did not interact with anterograde transport motors of the kinesin-1 family (KIF5A, B and C). Using dynein and kinesin accumulation at the sciatic nerve ligation sites as a surrogate measurement of axonal transport, we also showed that dynein mediated retrograde transport was slower in G93A than in WT mice at an early presymptomatic stage. While no decrease in KIF5A-mediated anterograde transport was detected, the slowing of anterograde transport of dynein heavy chain as a cargo was observed in the presymptomatic G93A mice. The results from this study along with other recently published work support that mutant SOD1 might only interact with and interfere with some kinesin members, which, in turn, could result in the impairment of a selective subset of cargos. Although it remains to be further investigated how mutant SOD1 affects different axonal transport motor proteins and various cargos, it is evident that mutant SOD1 can induce defects in axonal transport, which, subsequently, contribute to the propagation of toxic effects and ultimately motor neuron death in ALS.  相似文献   

12.
Synaptic cargo transport by kinesin and dynein in hippocampal neurons was investigated by noninvasively measuring the transport force based on nonequilibrium statistical mechanics. Although direct physical measurements such as force measurement using optical tweezers are difficult in an intracellular environment, the noninvasive estimations enabled enumerating force-producing units (FPUs) carrying a cargo comprising the motor proteins generating force. The number of FPUs served as a barometer for stable and long-distance transport by multiple motors, which was then used to quantify the extent of damage to axonal transport by dynarrestin, a dynein inhibitor. We found that dynarrestin decreased the FPU for retrograde transport more than for anterograde transport. This result indicates the applicability of the noninvasive force measurements. In the future, these measurements may be used to quantify damage to axonal transport resulting from neuronal diseases, including Alzheimer’s, Parkinson’s, and Huntington’s diseases.  相似文献   

13.
KIF3A is a new microtubule-based anterograde motor in the nerve axon   总被引:24,自引:13,他引:11       下载免费PDF全文
《The Journal of cell biology》1994,125(5):1095-1107
Neurons are highly polarized cells composed of dendrites, cell bodies, and long axons. Because of the lack of protein synthesis machinery in axons, materials required in axons and synapses have to be transported down the axons after synthesis in the cell body. Fast anterograde transport conveys different kinds of membranous organelles such as mitochondria and precursors of synaptic vesicles and axonal membranes, while organelles such as endosomes and autophagic prelysosomal organelles are conveyed retrogradely. Although kinesin and dynein have been identified as good candidates for microtubule-based anterograde and retrograde transporters, respectively, the existence of other motors for performing these complex axonal transports seems quite likely. Here we characterized a new member of the kinesin super-family, KIF3A (50-nm rod with globular head and tail), and found that it is localized in neurons, associated with membrane organelle fractions, and accumulates with anterogradely moving membrane organelles after ligation of peripheral nerves. Furthermore, native KIF3A (a complex of 80/85 KIF3A heavy chain and a 95-kD polypeptide) revealed microtubule gliding activity and baculovirus-expressed KIF3A heavy chain demonstrated microtubule plus end-directed (anterograde) motility in vitro. These findings strongly suggest that KIF3A is a new motor protein for the anterograde fast axonal transport.  相似文献   

14.
Cytoplasmic dynein is the multisubunit motor protein for retrograde movement of diverse cargoes to microtubule minus ends. Here, we investigate the function of dynein variants, defined by different intermediate chain (IC) isoforms, by expressing fluorescent ICs in neuronal cells. Green fluorescent protein (GFP)-IC incorporates into functional dynein complexes that copurify with membranous organelles. In living PC12 cell neurites, GFP-dynein puncta travel in both the anterograde and retrograde directions. In cultured hippocampal neurons, neurotrophin receptor tyrosine kinase B (TrkB) signaling endosomes are transported by cytoplasmic dynein containing the neuron-specific IC-1B isoform and not by dynein containing the ubiquitous IC-2C isoform. Similarly, organelles containing TrkB isolated from brain by immunoaffinity purification also contain dynein with IC-1 but not IC-2 isoforms. These data demonstrate that the IC isoforms define dynein populations that are selectively recruited to transport distinct cargoes.  相似文献   

15.
Terada S  Kinjo M  Hirokawa N 《Cell》2000,103(1):141-155
Slow axonal transport depends on an active mechanism that conveys cytosolic proteins. To investigate its molecular mechanism, we now constructed an in vitro experimental system for observation of tubulin transport, using squid giant axons. After injecting fluorescence-labeled tubulin into the axons, we monitored the movement of fluorescence by confocal laser scanning microscopy and fluorescence correlation spectroscopy. Here, from the pharmacological experiments and the functional blocking of kinesin motor protein by anti-kinesin antibody, we show that the directional movement of fluorescent profile was dependent on kinesin motor function. The fluorescent correlation function and estimated translational diffusion time revealed that tubulin molecule was transported in a unique form of large transporting complex distinct from those of stable polymers or other cytosolic protein.  相似文献   

16.
Axonal transport of neurofilament (NFs) is considered to be regulated by phosphorylation. While existing evidence for this hypothesis is compelling, supportive studies have been largely restricted to correlative evidence and/or experimental systems involving mutants. We tested this hypothesis in retinal ganglion cells of normal mice in situ by comparing subunit transport with regional phosphorylation state coupled with inhibition of phosphatases. NF subunits were radiolabeled by intravitreal injection of 35S-methionine. NF axonal transport was monitored by following the location of the peak of radiolabeled subunits immunoprecipitated from 9x1.1 mm segments of optic axons. An abrupt decline transport rate was observed between days 1 and 6, which corresponded to translocation of the peak of radiolabeled subunits from axonal segment 2 into segment 3. Notably, this is far downstream from the only caliber increase of optic axons at 150 mu from the retina. Immunoblot analysis demonstrated a unique threefold increase between segments 2 and 3 in levels of a "late-appearing" C-terminal NF-H phospho-epitope (RT97). Intravitreal injection of the phosphatase inhibitor okadaic acid increased RT97 immunoreactivity within retinas and proximal axons, and markedly decreased NF transport rate out of retinas and proximal axons. These findings provide in situ experimental evidence for regulation of NF transport by site-specific phosphorylation.  相似文献   

17.
Pulse-labeling studies of slow axonal transport in many kinds of axons (spinal motor, sensory ganglion, oculomotor, hypoglossal, and olfactory) have led to the inference that axonal transport mechanisms move neurofilaments (NFs) unidirectionally as a single continuous kinetic population with a diversity of individual transport rates. One study in mouse optic axons (Nixon, R. A., and K. B. Logvinenko. 1986. J. Cell Biol. 102:647-659) has given rise to the different suggestion that a significant and distinct population of NFs may be entirely stationary within axons. In mouse optic axons, there are relatively few NFs and the NF proteins are more lightly labeled than other slowly transported slow component b (SCb) proteins (which, however, move faster than the NFs); thus, in mouse optic axons, the radiolabel of some of these faster-moving SCb proteins may confuse NF protein analyses that use one dimensional (1-D) SDS-PAGE, which separates proteins by size only. To test this possibility, we used a 2-mm "window" (at 3-5 mm from the posterior of the eye) to compare NF kinetics obtained by 1-D SDS-PAGE and by the higher resolution two-dimensional (2-D) isoelectric focusing/SDS-PAGE, which separates proteins both by their net charge and by their size. We found that 1-D SDS-PAGE is insufficient for definitive NF kinetics in the mouse optic system. By contrast, 2-D SDS-PAGE provides essentially pure NF kinetics, and these indicate that in the NF-poor mouse optic axons, most NFs advance as they do in other, NF-rich axons. In mice, greater than 97% of the radiolabeled NFs were distributed in a unimodal wave that moved at a continuum of rates, between 3.0 and 0.3 mm/d, and less than 0.1% of the NF population traveled at the very slowest rates of less than 0.005 mm/d. These results are inconsistent with the proposal (Nixon and Logvinenko, 1986) that 32% of the transported NFs remain within optic axons in an entirely stationary state. As has been found in other axons, the axonal transport system of mouse optic axons moves NFs and other cytoskeletal elements relentlessly from the cell body to the axon tip.  相似文献   

18.
Neurons critically depend on the long‐distance transport of mitochondria. Motor proteins kinesin and dynein control anterograde and retrograde mitochondrial transport, respectively in axons. The regulatory molecules that link them to mitochondria need to be better characterized. Nuclear distribution (Nud) family proteins LIS1, Ndel1 and NudCL are critical components of cytoplasmic dynein complex. Roles of these Nud proteins in neuronal mitochondrial transport are unknown. Here we report distinct functions of LIS1, Ndel1 and NudCL on axonal mitochondrial transport in cultured hippocampal neurons. We found that LIS1 interacted with kinsein family protein KIF5b. Depletion of LIS1 enormously suppressed mitochondrial motility in both anterograde and retrograde directions. Inhibition of either Ndel1 or NudCL only partially reduced retrograde mitochondrial motility. However, knocking down both Ndel1 and NudCL almost blocked retrograde mitochondrial transport, suggesting these proteins may work together to regulate retrograde mitochondrial transport through linking dynein‐LIS1 complex. Taken together, our results uncover novel roles of LIS1, Ndel1 and NudCL in the transport of mitochondria in axons.   相似文献   

19.
In order to investigate the microtubule-associated intracellular trafficking of the NH2-terminal cellular prion protein (PrPC) fragment [Biochem. Biophys. Res. Commun. 313 (2004) 818], we performed a real-time imaging of fluorescent PrPC (GFP-PrPC) in living cells. Such GFP-PrPC exhibited an anterograde movement towards the direction of plasma membranes at a speed of 140-180 nm/s, and a retrograde movement inwardly at a speed of 1.0-1.2 microm/s. The anterograde and retrograde movements of GFP-PrPC were blocked by a kinesin family inhibitor (AMP-PNP) and a dynein family inhibitor (vanadate), respectively. Furthermore, anti-kinesin antibody (alpha-kinesin) blocked its anterograde motility, whereas anti-dynein antibody (alpha-dynein) blocked its retrograde motility. These data suggested the kinesin family-driven anterograde and the dynein-driven retrograde movements of GFP-PrPC. Mapping of the interacting domains of PrPC identified amino acid residues indispensable for interactions with kinesin family: NH2-terminal mouse (Mo) residues 53-91 and dynein: NH2-terminal Mo residues 23-33, respectively. Our findings argue that the discrete N-terminal amino acid residues are indispensable for the anterograde and retrograde intracellular movements of PrPC.  相似文献   

20.
The axonal transport of organelles is critical for the development, maintenance, and survival of neurons, and its dysfunction has been implicated in several neurodegenerative diseases. Retrograde axon transport is mediated by the motor protein dynein. In this study, using embryonic chicken dorsal root ganglion neurons, we investigate the effects of Ciliobrevin D, a pharmacological dynein inhibitor, on the transport of axonal organelles, axon extension, nerve growth factor (NGF)‐induced branching and growth cone expansion, and axon thinning in response to actin filament depolymerization. Live imaging of mitochondria, lysosomes, and Golgi‐derived vesicles in axons revealed that both the retrograde and anterograde transport of these organelles was inhibited by treatment with Ciliobrevin D. Treatment with Ciliobrevin D reversibly inhibits axon extension and transport, with effects detectable within the first 20 min of treatment. NGF induces growth cone expansion, axonal filopodia formation and branching. Ciliobrevin D prevented NGF‐induced formation of axonal filopodia and branching but not growth cone expansion. Finally, we report that the retrograde reorganization of the axonal cytoplasm which occurs on actin filament depolymerization is inhibited by treatment with Ciliobrevin D, indicating a role for microtubule based transport in this process, as well as Ciliobrevin D accelerating Wallerian degeneration. This study identifies Ciliobrevin D as an inhibitor of the bidirectional transport of multiple axonal organelles, indicating this drug may be a valuable tool for both the study of dynein function and a first pass analysis of the role of axonal transport. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 75: 757–777, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号