首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Mark L. Stolowitz 《Proteomics》2012,12(23-24):3438-3450
Over the course of the last decade, a number of investigators have come to appreciate that the surface of a MALDI target, after suitable modification, can be used for selective enrichment of peptides and proteins. More recently, surface‐modified nanoparticles (NPs) that readily co‐crystallize in MALDI matrix, are not ionized by laser desorption/ionization, and do not interfere with MS have attracted interest as alternatives to surface‐modified targets for selective enrichment of peptides and proteins. Surface‐modified targets and NPs facilitate parallel processing of samples, and when used in conjunction with MALDI mass spectrometers with kHz lasers enable development of high‐throughput proteomics platforms. Targets and NPs for reversed phase and ion exchange retention, selective enrichment of glycopeptides, selective enrichment of phosphopeptides, and immunoaffinity MS are described in conjunction with details regarding their preparation and utility. Commercial availability of the reagents and substrates required to prepare surface‐modified targets and NPs is also discussed.  相似文献   

2.
Boronic acid functionalized gold‐coated Si wafer has been used as MALDI plate to isolate and enrich glycopeptides for MS analysis. This on‐plate enrichment strategy offers good benefits due to the combination of specific selectivity through enrichment and direct manipulation on the wafer. First, solution transfer and eluting steps required in conventional enrichment strategies are not needed any more, thereby reducing sample loss during these steps. Second, the LODs of glycopeptides have been increased by two orders of magnitude. Third, non‐specific bindings have not been detected even when non‐glycopeptides are 100 times more than glycopeptides. Furthermore, the recovery of glycopeptide is up to 65.8% and glycopeptides even can be sensitively detected in the presence of 200 mM ammonium bicarbonate or physiological buffer PBS.  相似文献   

3.
Many biologically relevant glycoproteins need to be separated on 1D‐ or 2D‐gels prior to analysis and are available in picomole amounts. Therefore, it is important to have optimized methods to unravel the glycome that combine in‐gel digestions with MALDI‐TOF‐MS. In this technical report, we investigated how the detection of in‐gel released N‐glycans could be improved by MALDI‐TOF‐MS. First, an AnchorChip target was tested and compared to ground steel target using several reference oligosaccharides. The highest signals were obtained with an AnchorChip target and D‐arabinosazone as the matrix; a LOD of 1.3 to 10 fmol was attained. Then, the effect of octyl‐β‐glucopyranoside, a nonionic detergent, was studied during in‐gel peptide‐N4‐(acetyl‐ß‐glucosaminyl) asparagine amidase F digestion of standard glycoproteins and during glycan extraction. Octyl‐β‐glucopyranoside increased the intensity and the amount of detected neutral as well as acidic N‐glycans. A LOD of under 7 pmol glycoprotein could be achieved.  相似文献   

4.
Analysis of protein glycosylation remains a significant challenge due to the low abundance of glycoproteins or N‐glycopeptides. Here we have synthesized an amino‐functionalized metal‐organic framework (MOF) MIL‐101(Cr)‐NH2 whose surface is grafted with a hydrophilic dendrimer poly(amidoamine) (PAMAM) for N‐glycopeptide enrichment based on the hydrophilic interactions. The selected substrate MOF MIL‐101(Cr) owns high surface area which provides nice support for peptide adsorption. In addition, the MOF displayed a good hydrophilic property after being modified with amino groups. Most importantly, the grafted hydrophilic dendrimer PAMAM was firstly applied in the postsynthetic modification of MOFs. And this functionalization route using macromolecular dendrimer opens a new perspective in MOFs design. Owing to its long dendritic chains and abundant amino groups, our material displayed dual hydrophilic property. In the enrichment of standard glycoprotein HRP digestion, the functional MOF material was shown to have low detection limit (1 fmol/μL) and good selectivity when the concentration of nonglycopeptides was 100 fold higher than the target N‐glycopeptides. All the results proved that MIL‐101(Cr)‐NH2@PAMAM has great potential in the glycoproteome analysis.  相似文献   

5.
Protein glycosylation is one of the most important PTMs in biological organism. Lectins such as concanavalin A (Con A) have been widely applied to N‐glycosylated protein investigation. In this study, we developed Con A‐immobilized magnetic nanoparticles for selective separation of glycoproteins. At first, a facile immobilization of Con A on aminophenylboronic acid‐functionalized magnetic nanoparticles was performed by forming boronic acid‐sugar‐Con A bond in sandwich structure using methyl α‐D ‐mannopyranoside as an intermedium. The selective capture ability of Con A‐modified magnetic nanoparticles for glycoproteins was tested using standard glycoproteins and cell lysate of human hepatocelluar carcinoma cell line 7703. In total 184 glycosylated sites were detected within 172 different glycopeptides corresponding to 101 glycoproteins. Also, the regeneration of the protein‐immobilized nanoparticles can easily be performed taking advantage of the reversible binding mechanism between boronic acid and sugar chain. The experiment results demonstrated that Con A‐modified magnetic nanoparticles by the facile and low‐cost synthesis provided a convenient and efficient enrichment approach for glycoproteins, and are promising candidates for large‐scale glycoproteomic research in complicated biological samples.  相似文献   

6.
Molecularly imprinted polymers (MIPs) were combined to MALDI‐TOF‐MS to evaluate a selective enrichment (SE) method for the determination of clinically relevant biomarkers from complex biological samples. The concept was proven with the myocardial injury marker Troponin I (cTnI). In a first part, MIP materials entailed for the recognition of cTnI epitopes (three peptides selected) were prepared and characterized in dimensions (0.7–2μm), dissociation constants (58–817 nM), kinetics of binding (5–60 min), binding capacity (ca. 1.5 µg/mg polymer), imprinting factors (3 > IF > 5) and selectivity for the peptide epitope. Then, the MIPs, incubated with cTnI peptides and spotted on the target with the DHB matrix, were assayed for the desorption of the peptides in MALDI‐TOF‐MS. The measured detection limit was ca. 300 femtomols. Finally, the MIP‐SE MALDI‐TOF‐MS was tested for its ability to enrich in the cTnI peptides from a complex sample, mimic of serum (i.e. 81 peptides of digested albumin). The MIP‐SE MALDI‐TOF‐MS successfully enriched in cTnI peptides from the complex sample proving the technique could offer a flexible platform to prepare entailed materials suitable for diagnostic purposes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The discovery of novel biomarkers by means of advanced detection tools based on proteomic analysis technologies necessitates the development of improved diagnostic methods for application in clinical routine. On the basis of three different application examples, this review presents the limitations of conventional routine diagnostic assays and illustrates the advantages of immunoaffinity enrichment combined with MALDI‐TOF MS. Applying this approach increases the specificity of the analysis supporting a better diagnostic recognition, sensitivity, and differentiation of certain diseases. The use of MALDI‐TOF MS as detection method facilitates the identification of modified peptides and proteins providing additional information. Further, employing respective internal standard peptides allows for relative and absolute quantitation which is mandatory in the clinical context. Although MALDI‐TOF MS is not yet established for clinical routine diagnostics this technology has a high potential for improvement of clinical diagnostics and monitoring therapeutic efficacy.  相似文献   

8.
An on-plate specific enrichment method is presented for the direct analysis of peptides phosphorylation. An array of sintered TiO 2 nanoparticle spots was prepared on a stainless steel plate to provide porous substrate with a very large specific surface and durable functions. These spots were used to selectively capture phosphorylated peptides from peptide mixtures, and the immobilized phosphopeptides could then be analyzed directly by MALDI MS after washing away the nonphosphorylated peptides. beta-Casein and protein mixtures were employed as model samples to investigate the selection efficiency. In this strategy, the steps of phosphopeptide capture, purification, and subsequent mass spectrometry analysis are all successfully accomplished on a single target plate, which greatly reduces sample loss and simplifies analytical procedures. The low detection limit, small sample size, and rapid selective entrapment show that this on-plate strategy is promising for online enrichment of phosphopeptides, which is essential for the analysis of minute amount of samples in high-throughput proteome research.  相似文献   

9.
In this work, magnetic graphene double‐sided mesoporous nanocomposites (mag‐graphene@mSiO2) were synthesized by coating a layer of mesoporous silica materials on each side of magnetic grapheme. The surfactant (CTAB) mediated sol‐gel coating was performed using tetraethyl orthosilicate as the silica source. The as‐made magnetic graphene double‐sided mesoporous silica composites were treated with high‐temperature calcination to remove the hydroxyl on the surface. The novel double‐sided materials possess high surface area (167.8 cm2/g) and large pore volume (0.2 cm3/g). The highly open pore structure presents uniform pore size (3.2 nm) and structural stability. The hydrophobic interior pore walls could ensure an efficient adsorption of target molecules through hydrophobic–hydrophobic interaction. At the same time, the magnetic Fe3O4 particles on both sides of the materials could simplify the process of enrichment, which plays an important role in the treatment of complex biological samples. The magnetic graphene double‐sided nanocomposites were successfully applied to size‐selective and specific enrichment of peptides in standard peptide mixtures, protein digest solutions, and human urine samples. Finally, the novel material was applied to selective enrichment of endogenous peptides in mouse brain tissue. The enriched endogenous peptides were then analyzed by LC‐MS/MS, and 409 endogenous peptides were detected and identified. The results demonstrate that the as‐made mag‐graphene@mSiO2 have powerful potential for peptidome research.  相似文献   

10.
Normal methods for benzo[a]pyrene (BaP) determination, including gas chromatography–mass spectrometry and liquid chromatography with fluorescence detection, involve expensive instruments and complex separation and purification processes. Based on membrane enrichment, coupled with solid‐phase constant‐wavelength synchronous fluorescence spectrometry, a simple, fast, sensitive method was proposed for the determination of BaP in water samples. A Nylon membrane was used as the solid‐phase extraction material for enrichment. After enrichment, a constant‐wavelength synchronous fluorescence spectrum was scanned directly on the membrane‐concentrated BaP without elution. Spectral measurement and enrichment conditions were optimized. Under optimum conditions, when using 150 mL sample solutions, the relationship between fluorescence intensity and BaP concentrations in the 0.05–10.00 μg L–1 range could be fitted by binomial function with an R2 value of 0.9973. Limit of detection (LOD) was calculated to be 0.0137 μg L–1. The volume of the sample solution was increased to 1000 mL to test if the method could be applied to determine lower BaP concentrations. A linear relationship still existed in the range 2.0–20.0 ng L–1 BaP with an R2 value of 0.9895, and a LOD of 2.4 ng L–1. The method was also used to measure the BaP concentration in several natural water samples, and recoveries were in the 90–110% range with relative standard deviations (RSDs) in the 0.58–7.93% range. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In this work, the composites of magnetic Fe3O4@SiO2@poly (styrene‐co‐4‐vinylbenzene‐boronic acid) microspheres with well‐defined core–shell–shell structure were facilely synthesized and applied to selectively enrich glycopeptides. Due to the relatively large amount of vinyl groups introduced by 3‐methacryloxy‐propyl‐trimethoxysilane on the core‐shell surface, the poly(styrene‐co‐4‐vinylbenzeneboronic acid) (PSV) was coated with high efficiency, resulting in a large amount of boronic acid on the outermost polymer shell of the Fe3O4@SiO2@PSV microspheres, which is of great importance to improve the enrichment efficiency for glycopeptides. The obtained Fe3O4@SiO2@PSV microspheres were successfully applied to the enrichment of glycopeptides with strong specificity and high selectivity, evaluated by capturing glycopeptides from tryptic digestion of model glycoprotein HRP diluted to 0.05 ng/μL (1.25 × 10?13 mol, 100 μL), tryptic digest of HRP and nonglycosylated BSA up to the ratio of 1:120 w/w and the real complex sample human serum with 103 unique N‐glycosylation peptides of 46 different glycoproteins enriched.  相似文献   

12.
In this work, core‐shell magnetic metal organic framework (MOF) microspheres were successfully synthesized by coating magnetite particles with mercaptoacetic acid and subsequent reactions with ethanol solutions of Cu(OAc)2 and benzene‐1,3,5‐tricarboxylic acid (designated as H3btc) alternately. The resulting Fe3O4@[Cu3(btc)2] possess strong magnetic responsiveness. We applied the novel nanocomposites in the enrichment of low‐concentration standard peptides, peptides in MYO and BSA tryptic digests and in human urine in combination with MALDI‐TOF MS analysis for the first time. In addition, the Cu3(btc)2 MOF shells exhibit strong affinity to peptides, thus providing a rapid and convenient approach to the concentration of low‐abundance peptides. Notably, peptides at an extremely low concentration of 10 pM could be detected by MALDI‐TOF MS after enrichment with the magnetic MOF composites. In brief, the facile synthesis and efficient enrichment process of the Fe3O4@[Cu3(btc)2] microspheres make them promising candidates for the isolation of peptides in even complex biological environments.  相似文献   

13.
Highly selective and efficient enrichment of glycopeptides from complex biological samples is necessary. In this study, novel zwitterionic hydrophilic polydopamine‐coated magnetic graphene composites (magG/PDA/Au/l ‐Cys) were synthesized and applied to the enrichment of glycopeptides. The size, morphology, and composition of magG/PDA/Au/l ‐Cys composites were investigated by transmission electron microscopy, scanning electron microscopy, FT‐infrared spectroscopy, and X‐ray diffraction. The composites possessed a number of desirable characteristics, including good biocompatibility easy separation property and excellent hydrophilicity. By virtue of the features contributed by different ingredients, the prepared composites demonstrated superior performance for glycopeptide enrichment with high sensitivity (0.1 fmol), efficiency, selectivity (1:100), and repeatability (at least ten times). In addition, the composites were successfully applied to the enrichment of glycopeptides from human serum and 40 unique N‐glycosylation peptides from 31 different N‐linked glycoproteins were identified. The superior hydrophilic material is of great potential for the analysis of glycoproteins.  相似文献   

14.
A convergent synthesis for erythropoietin (EPO) 1‐28 N‐glycopeptide hydrazides was developed. In this approach, EPO 1‐28 peptides were synthesized on the solid phase and converted to C‐terminal hydrazides after cleavage from the resin. After selective deprotection of the Asp24 side chain, the desired glycosylamine was coupled by pseudoproline‐assisted Lansbury aspartylation. Although the initial yields of the EPO 1‐28 glycopeptides were satisfactory, they could be markedly improved by increasing the purity of the peptide using a reversed‐phase high‐performance liquid chromatography (RP‐HPLC) purification of the protected peptide.  相似文献   

15.
Compared with N‐linked glycosylation, the analysis of O‐GalNAc glycosylation is extremely challenging due to the high structure diversity of glycans and lack of glycosidases to release O‐GalNAc glycans. In this work, a glycoform simplification strategy by combining HILIC enrichment with chemical de‐sialylation to characterize O‐GalNAc glycosylation of human serum is presented. This method is first validated by using the bovine fetuin as the test sample. It is found that more than 90% of the sialic acid residues can be removed from bovine fetuin by the acid‐assisted de‐sialylation method, which significantly simplifies the glycan structure and improves identification sensitivity. Indeed, the number of identified peptide backbones increases nearly one fold when this strategy is used. This method is further applied to analyze the human serum sample, where 185 O‐GalNAc modified peptide sequences corresponding to 94 proteins with high confidence (FDR (false detection rate) <1%) are identified. This straight forward strategy can significantly reduce the variations of glycan structures, and is applicable to analysis of other biological samples with high complexity.  相似文献   

16.
In this work, for the first time, a novel C60‐functionalized magnetic silica microsphere (designated C60‐f‐MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60‐f‐MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low‐concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60‐f‐MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60‐f‐MS microspheres were successfully applied to the enrichment of low‐concentration peptides in tryptic protein digest and human urine via a MALDI‐TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low‐concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene‐derivatized magnetic silica materials are superior to those already available in the market. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel C60‐f‐MS microspheres makes it a promising candidate for isolation of low‐concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate.  相似文献   

17.
Selective and efficient preconcentration is indispensable for low concentration of phosphopeptides in phosphorylated protein‐related samples prior to MS‐based analysis. Herein, an on‐chip system coupled magnetic SPE with MALDI‐TOF MS was designed. A metal oxide affinity chromatography material, indium oxide, was coated on the surface of Fe3O4 magnetic nanoparticles to prepare the adsorbent, spatially confined with an applied magnetic field. The adsorbent exhibited high selectivity for phosphopeptides in tryptic digests of the mixture of β‐casein and BSA (1:1000) and the mixture of β‐casein, BSA, and ovalbumin (1:100:100). Thanking to the enrichment ability and specificity for phosphopeptides with the adsorbent, the on‐chip magnetic SPE‐MALDI‐TOF MS approach showed high sensitivity with a low detection limit of 4 fmol. In addition, the developed approach was used to analyze phosphopetides in non‐fat milk digests and human serum successfully.  相似文献   

18.
A new near‐infrared fluorescence sensor PDI‐PD for Ag+ ions was successfully prepared and its structure characterized by 1H nuclear magnetic resonance (NMR), 13C NMR and high‐resolution mass spectrometry; matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (HRMS MALDI‐TOF). The probe exhibited rapid, sensitive, and selective two‐channel fluorescence responses towards Ag+ ions and protons. The probe has a marked high binding affinity and high sensitivity for Ag+, with a detection limit of 1.4 × 10?6 M. An approximately five‐fold enhanced core emission at 784 nm was attributed to fluorescence resonance energy transfer (FRET). The enhanced core emission of the probe with Ag+ ions based on photo‐induced electron transfer and FRET is discussed. In addition, the probe presented a visible colour change. All experimental results demonstrated that PDI‐PD is an efficient tool for the selective, sensitive and rapid detection of Ag+ ions and protons using two‐channel fluorescence responses.  相似文献   

19.
Oxidation of thiol proteins, which results in conversion of cysteine residues to cysteine sulfenic, sulfinic or sulfonic acids, is an important posttranslational control of protein function in cells. To facilitate the analysis of this process with MALDI‐MS, we have developed a method for selective enrichment and identification of peptides containing cysteine sulfonic acid (sulfopeptides) in tryptic digests of proteins based on ionic affinity capture using polyarginine‐coated nanodiamonds as high‐affinity probes. The method was applied to selectively concentrate sulfopeptides from either a highly dilute solution or a complex peptide mixture in which the abundance of the sulfonated analyte is as low as 0.02%. The polyarginine‐coated probes exhibit a higher affinity for peptides containing multiple sulfonic acids than peptides containing single sulfonic acid. The limit of the detection is in the femtomole range, with the MALDI‐TOF mass spectrometer operating in the negative ion mode. The results show that the new approach has good specificity even in the presence of phosphopeptides. An application of this method for selective enrichment and structural identification of sulfopeptides is demonstrated with the tryptic digests of performic‐acid‐oxidized BSA.  相似文献   

20.
A common technique for analysis of protein glycosylation is HPLC coupled to mass spectrometry (LC-MS). However, analysis is challenging due to a low abundance of glycopeptides in complex protein digests, microheterogeneity at the glycosylation site, ion suppression effects, and competition for ionization by coeluting peptides. Specific sample preparation is necessary for a comprehensive and site-specific glycosylation analysis by MS. In this study we qualitatively compared hydrophilic interaction chromatography (HILIC) and hydrazine chemistry for the enrichment of all N-linked glycopeptides and titanium dioxide for capturing sialylated glycopeptides from a complex peptide mixture. Bare silica, microcrystalline cellulose, amino-, amide- (TSKgel Amide-80), and sulfobetaine-(ZIC-HILIC) bonded phases were evaluated for HILIC enrichment. The experiments revealed that ZIC-HILIC and TSKgel Amide-80 are very specific for capturing glycopeptides under optimized conditions. Quantitative analysis of N-glycosidase F-released and 2-aminobenzamide-labeled glycans of a ZIC-HILIC-enriched monoclonal antibody demonstrated that glycopeptides could be enriched without bias for particular glycan structures and without significant losses. Sialylated glycopeptides could be efficiently enriched by titanium dioxide and in addition to HILIC both methods enable a comprehensive analysis of protein glycosylation by MS. Enrichment of N-linked glycopeptides by hydrazine chemistry resulted in lower peptide recovery using a more complex enrichment scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号