首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The Qilian Mountains represent one of the key livestock‐raising grasslands in China. The two main herbivore species raised in this area – yaks and sheep – are of critical economical value. Grasshoppers compete with these animals for available nutrients, creating multifaceted relationships between livestock, grasshoppers and plants. A clear understanding of such relationships is lacking and is urgently needed to guide conservation efforts. 2. This study aims to document the effects of yak and sheep grazing on grasshopper assemblages and to elucidate the underlying mechanisms of such effects. 3. It is shown here that yaks and sheep impact grasshopper assemblages differently. Grasshopper assemblages exhibited lower density, biodiversity, richness, and evenness of distribution in yak‐grazed pastures than in grazing‐free grasslands. Sheep‐grazed pastures exhibited a dramatically divergent picture, with elevated density, biodiversity and richness, and a slightly decreased evenness of distribution. Grasshoppers were generally larger in grazed pastures than in grazing‐free grasslands, especially in yak‐grazed plots. 4. The present study suggests that differences between yak and sheep pastures in plant assemblage structure and plant traits are probably the underlying forces driving the differences in grasshopper assemblage structure and grasshopper traits, respectively. 5. The study shows that the grasshopper habitat indicator species differ between yak and sheep pastures, raising the possibility that such indicators can be used to monitor grassland usage and degradation in the Qilian Mountains. 6. These results provide novel insights into the dynamic interactions of common domesticated herbivore species, grasshoppers and plants in Qilian Mountains, which augment current knowledge and may ultimately lead to better conservation practices.  相似文献   

2.
We investigated how the high small-scale species richness of an alpine meadow on the Qinghai-Tibet Plateau, China, is maintained. This area is characterized by strong wind and severe cold during long winters. In winter, most livestock is grazed on dead leaves in small pastures near farmers’ residences, whereas in the short summer, livestock is grazed in mountainous areas far from farmers’ residences. The number of plant species and the aboveground biomass were surveyed for three adjacent pastures differing in grazing management: a late-winter grazing pasture grazed moderately from 1 February to 30 April, an early-winter grazing pasture grazed lightly from 20 September to late October, and a whole-year grazing pasture grazed intensively throughout the entire year. In each pasture, we harvested the aboveground biomass from 80 or 100 quadrats of 0.01 m2 along a transect and classified the contents by species. We observed 15.5–19.7 species per 0.01 m2, which is high richness per 0.01 m2 on a worldwide scale. The species richness in the two winter grazing pastures was higher than that in the whole-year grazing pasture. The spatial variation in species richness and species composition in the two winter grazing pastures in which species richness was high was greater than that in the whole-year grazing pasture in which species richness was lower. Most of the leaves that are preserved on the winter grazing pastures during summer are blown away by strong winds during winter, and the remaining leaves are completely exhausted in winter by livestock grazing. A pasture with a high richess is accompanied by a high spatial variation in species richness and species composition. There is a high possibility that the characteristic of spatial variation is also caused by traditional grazing practices in this area.  相似文献   

3.
Grazed pastures have been historically used in Japan for animal production with little concern to biodiversity. However, pasturing has significant effects on biodiversity and productivity because it produces gaps in the distribution of vegetation due to animal activities. We hypothesized that different grazing activities would have effects on the diversity of plant species and forage quality in different ways and that the sward type would modify these effects. Therefore, we attempted to predict the diversity of plant species and changes in total nutrient content per area at the time since treatment on the basis of simulations of cattle activities in three pastures with different vegetation compositions. We created three ground types (grazed areas, cleared ground, and undisturbed areas) in three pastures (improved, partially improved semi-natural, and semi-natural pasture) and recorded the percentage cover of each plant within the plots. We repeatedly calculated the biodiversity indices from these community data by varying the sampling probabilities for each ground type, which provided us with the expected species diversity indices with the changing proportions of each ground type. Furthermore, we investigated the dry matter and forage qualities. For improved and partially improved semi-natural pasture, our models predicted that plant diversity increased as a saturating function of the proportion of cleared ground and grazed area relative to the undisturbed area, although our models also showed exponential curves for the semi-natural pasture. Forage samples from cleared ground plots and semi-natural pasture had the lowest forage quality among all pastures. Based on the predicted effects of cattle pasturing on the plant species biodiversity and forage quality, it may be more beneficial to maintain a small proportion of cleared ground in the improved pasture during intensive grazing.  相似文献   

4.
Grasslands being used in sheep farming systems are managed under a variety of agricultural production, recreational and conservational objectives. Although sheep grazing is rarely considered the best method for delivering conservation objectives in seminatural temperate grasslands, the literature does not provide unequivocal evidence on the impact of sheep grazing on pasture biodiversity. Our aim was therefore to review evidence of the impacts of stocking rate, grazing period and soil fertility on plant communities and arthropod populations in both mesotrophic grasslands typical of agriculturally improved areas and in native plant communities. We therefore conducted a literature search of articles published up to the end of the year 2010 using ‘sheep’ and ‘grazing’ as keywords, together with variables describing grassland management, plant community structure or arthropod taxa. The filtering process led to the selection of 48 articles, with 42 included in the stocking rate dataset, 9 in the grazing period dataset and 10 in the soil fertility dataset. The meta-analysis did not reveal any significant trends for plant species richness or plant community evenness along a wide stocking rate gradient. However, we found frequent shifts in functional groups or plant species abundance that could be explained by the functional properties of the plants in the community. The meta-analysis confirmed that increasing soil fertility decreased plant species richness. Despite the very limited dataset, plant species richness was significantly greater in autumn-grazed pastures than in ungrazed areas, which suggests that choosing an appropriate grazing period would be a promising option for preserving biodiversity in sheep farming systems. Qualitative review indicated that low grazing intensity had positive effects on Orthoptera, Hemiptera (especially phytophagous Auchenorrhyncha) and, despite a diverse range of feeding strategies, for the species richness of Coleoptera. Lepidoptera, which were favoured by more abundant flowering plants, also benefited from low grazing intensities. Spider abundance and species richness were higher in ungrazed than in grazed pastures. In contrast, there are insufficient published studies to draw any firm conclusions on the benefits of late grazing or stopping fertilization on insect diversity, and no grounds for including any of this information in decision support tools at this stage.  相似文献   

5.
Hart  Richard H. 《Plant Ecology》2001,155(1):111-118
Shortgrass steppe rangeland near Nunn, Colorado, USA, has been lightly,moderately, or heavily grazed by cattle, or protected from grazing inexclosures, for 55 years. Plant species biodiversity and evenness were greatestin lightly- and moderately-grazed pastures. Both pastures weredominated by the warm-season shortgrass Boutelouagracilis, but the cool-season midgrasses Pascopyrumsmithii and Stipa comata contributedsignificantly to biomass production on the lightly-grazed pasture, asthey did in the exclosures. Diversity was least in the exclosures, which werestrongly dominated by the cactus Opuntia polyacantha.Buchloë dactyloides, another warm-seasonshortgrass, and Bouteloua gracilis were co-dominantsunder heavy grazing, and diversity was intermediate. Plant community structureand diversity were controlled by selective grazing by cattle and soildisturbance by cattle and rodents. Shortgrass steppe moderately or heavilygrazed by cattle was similar to and probably as sustainable as steppe grazed formillenia by bison and other wild ungulates.  相似文献   

6.
The effect of rotational grazing on the sward structure of long-term abandoned grassland and the sheep diet selection were investigated in the Giant Mts (Krkono?e/Karkonosze). The aim of the study was to answer the following questions: (1) Does sheep grazing affect the sward structure of previously abandoned mountain grassland? (2) How does sheep diet selection develop within and among grazing seasons? (3) Which section of a pasture do sheep prefer to graze? Data was collected three times during each grazing season in spring, summer and in autumn in the years 2001, 2002 and 2003 Fifty 1 × 1 m plots were used where the plant species occurrence and damage of plants by grazing for all species were repeatedly recorded. 1) Nonsignificant changes in plant species occurrences were recorded in spite of obvious visual changes in sward structure due to grazing e.g. the retreat of tall dominant species characteristic of long-term unmanaged grasslands. 2) Seasonal as well as inter-annual changes in sheep diet selection were detected. In spring 2001, sheep grazed over a wide variety of plant species in low quantities. In subsequent springs, they preferred species favoured during previous autumns (Veratrum album subsp. lobelianum; Ranunculus platanifolius; Senecio ovatus) and changed the diet only as a result of the elimination of favoured plants. 3) Sheep preferred to graze at the highest elevated part of the pasture probably as a consequence of anti-predator behaviour not due to higher occurrence of favoured plant species or the presence of a drinking place or salt licks. Changes in the sward structure were mostly of a quantitative not qualitative character, thus the presence-absence data collection is not a suitable method for monitoring the effects of management restoration. The diet selection changed probably due to the animals’ experience; sheep had no experience with montane species in spring 2001. The sheep were able to recognize favoured plant species after 6 months of wintering in lowland.  相似文献   

7.
Restoration of semi-natural grasslands by cattle grazing is among the most practical options for reversing the decline of northern European floristic diversity, but no studies on this subject are available. In this work the success of restoration of abandoned, privately owned mesic semi-natural grasslands by farmers receiving support from the EU agri-environmental support scheme was studied in southwestern Finland. Three kinds of grasslands were compared: old (continuously cattle grazed), new (cattle grazing restarted 3–8 years ago) and abandoned pastures (grazing terminated >10 years ago). Plant species composition of the three pasture types was floristically different in multivariate analyses (non-metric multidimensional scaling). Total species richness, richness of grassland plants, indicator plants and rare plants were highest in old and lowest in abandoned pastures in all studied spatial scales (0.25–0.8 ha, 1 and 0.01 m2). The results were congruent with different scales and species list definitions, suggesting that species density scale (1 m2) can be used as a partial surrogate for large scale species richness. Species richness of new pastures was 20% higher on 0.25–0.8 ha, 40–50% higher on 1 m2 and 30% higher on the 0.01 m2 scale compared to abandoned grasslands. Rare species showed insignificant response to resumed grazing. Despite problems in management quality, this study showed promising results of restoration of abandoned grasslands by cattle grazing on private farms. However, populations of several rare grassland plants may not recover with present cattle grazing regimes. Management regulations in the agri-environmental support scheme need to be defined more precisely for successful restoration.  相似文献   

8.
Epidemiology of ruminant helminths is the foundation on which strategic parasite control programmes are designed. Without this information one is not able to use anthelmintics to provide the optimal benefits for controlling both the adult worm and the pasture larval populations. The absence of strategic programmes generally results in using anthelmintics at the convenience of the producer, which may have little if any impact on parasite populations. The design of a strategic parasite control programme requires a knowledge of the dynamics of egg shedding from the host and the resulting pasture larval populations. It is important to know if larvae are available when animals are turned out onto pasture, when larval populations reach their maximal numbers and when they are induced to become hypobiotic. The goal is to keep pasture larval populations as low as possible. The use of pasture rotation adds another dimension to control programmes. The longer a pasture is allowed to remain fallow, the lower the pasture larval burden will be when it is grazed next. However, when we use intensive rotational grazing, animals may return to the pasture about 28 days later, when the larvae resulting from the eggs shed in the previous grazing are infective. This practice forces cattle to eat all of the forage available, including the grass closest to the faecal pat, where most of the infective larvae are available. If we treated cattle before turning them onto a clean rotationally grazed pasture, we should be able to control parasitism. Using a long-acting anthelmintic should enhance helminth control in rotationally grazed pastures and actually help to clean the pastures. Another grazing management practice is to alternately graze different species. This programme with the strategic use of anthelmintics should reduce parasitism in both host species.  相似文献   

9.
Commencing in December 1970, paddocks of a uniform series of sheep pastures were grazed for 6, 12 or 24 weeks by either yearling steers is or yearling ewes. Cattle pastures were treated similarly. All ewes and steers were pre-dosed with anthelmintic.At the conclusion of alternate grazing the effectiveness of the grazing treatments was evaluated by grazing each paddock for 1 month with either ten worm-free lambs (sheep pastures) or three wormfree calves (cattle pastures). The test animals were then slaughtered for total worm counts. The grazing of sheep pastures with cattle for 6, 12 or 24 weeks from December onwards resulted in reductions in numbers of Haemonchus contortus and Trichostrongylus colubriformis in test lambs. In comparison with continuous grazing by sheep, Nematodirus spp was only reduced after 24 weeks grazing by cattle. Cattle pastures grazed by sheep for 6 weeks showed no reduction in numbers of Ostertagia ostertagi or Cooperia oncophora in test calves. However after 12 weeks with sheep, numbers of O. ostertagi though not C. oncophora were reduced and after 24 weeks of alternate grazing both these species were reduced.Calves following the 6 week sheep treatments acquired both Haemonchus contortus and Trichostrongylus colubriformis and the calves from the 12 week sheep treatment paddock also carried H. contortus. For sheep the only evidence of cross-transmission was the occurrence of small numbers of Cooperia oncophora in test lambs from the 24 week cattle grazing treatment.The results provide evidence that sequential stocking with cattle and sheep in conjunction with anthelmintic treatment is an effective management strategy for preparing parasitologically safer pastures, but further information is required to determine the optimum timing of sequential stocking in farming situations.  相似文献   

10.
Livestock grazing is a common management practise in semi-natural grasslands in Central Europe. Different types of livestock (horses, cattle, sheep) and grazing intensity are known to affect the richness and composition of plant species. However, knowledge of grazing-dependent effects on invertebrates is limited. We examined the influence of horse, cattle and sheep grazing on the richness, abundance and composition of land snail species in 21 calcareous nutrient-poor grassland areas in the northwestern Jura Mountains, Switzerland. Grazing by different livestock species did not affect the species richness, abundance and species composition of land snails. Furthermore, the number of open-land species and the ratio of large- to small-sized snail species or individuals did not differ among the three pasture types. However, independent of livestock species, grazing intensity negatively influenced the snail fauna. Snail species richness, abundance and number of Red list species decreased with increasing grazing intensity. Grazing intensity also affected the occurrence of individual snail species (Truncatellina cylindrica, Cecilioides acicula, Candidula unifasciata and Trichia plebeia). To preserve the snail fauna in nutrient-poor grasslands, pastures can be stocked with horses, cattle or sheep. However, both maximum stocking rate (number of livestock units per hectare) and grazing duration (number of grazing days per year) must be carefully defined for the proper management of the pastures.  相似文献   

11.
There is very limited information concerning livestock (sheep and goats) and brown hare Lepus europaeus interaction when both coexist. The effect of the intensity of livestock grazing on seasonal habitat use by hares, in a typical Mediterranean rangeland, was evaluated using the pellet-count method. Lightly grazed pastures were less preferred by hares compared with moderately grazed ones, whereas ungrazed pastures were used less intensively than grazed ones. Because livestock grazing reduces the quantity of standing biomass proportionally to its grazing intensity, forage resource was not the driving force for pasture selection. The increased use of moderately grazed pastures by hares in relation to lightly and ungrazed ones, where vegetation was more abundant, could be attributed to their reduced herbage height and density. This behaviour is probably a tactic that hares follow for predator avoidance, because they are more likely to detect visually approaching predators when feeding in a biotope with a limited herbaceous layer. The conclusion of this research is that livestock and brown hare coexistence may be compatible and beneficial rather than competitive when stocking rates do not exceed grazing capacity, leading to the conclusion that proper livestock grazing and hare population management can be feasible in practice.  相似文献   

12.
Changes of agricultural practices have led to decline of semi-natural habitats sustained by traditional animal husbandry in many European regions. The abandonment of semi-natural pastures leads to increase of vascular plant biomass and subsequent decline of weak competitors such as bryophytes. Re-establishing traditional animal husbandry may potentially restore biodiversity but the success of such measures remains insufficiently known. In this study, we asked if re-establishing cattle grazing on previously abandoned grasslands will restore their bryophyte communities. The effect of cattle grazing on bryophyte communities of mesic semi-natural grasslands was studied in south-western Finland in a comparison of (i) continuously grazed pastures, (ii) previously abandoned pastures where grazing was re-established during 1990s, and (iii) abandoned pastures, where grazing had ceased during late 1960s to early 1980s. The average cover, species richness, species density and species diversity of bryophytes were significantly higher in the continuously grazed than in the abandoned grasslands. Ordination analyses revealed clear differences also in community structure between the management classes. Re-established grasslands were ecologically heterogeneous and situated in between the continuously grazed and abandoned grasslands in all characteristics, indicating variable effect of the restoration measure. Seventeen bryophyte species were recognized as significant indicators of the three grassland classes, four of which could be used as indicators of valuable grassland habitats. Although there was variation in the consequences of re-introduction of grazing, the results give evidence of positive effect of grazing on regaining bryophyte diversity of abandoned grasslands.  相似文献   

13.
Cattle and Weedy Shrubs as Restoration Tools of Tropical Montane Rainforest   总被引:4,自引:1,他引:3  
Over the last 150 years, a large proportion of forests in Latin America have been converted to pastures. When these pastures are abandoned, grasses may slow re‐establishment of woody species and limit forest regeneration. In this study, we explored the use of cattle in facilitating the establishment of woody vegetation in Colombian montane pastures, dominated by the African grasses Pennisetum clandestinum (Kikuyo) and Melinis minutiflora (Yaraguá). First, we described woody and herbaceous vegetation in grazed and non‐grazed pastures. Second, we tested the effect of grazing and seed addition on the establishment and growth of woody species. We also determined if the effect of grazing was different in P. clandestinum and M. minutiflora pastures. We found that low stocking density of cattle greatly increased density, number of branches per individual (a measure of “shrubiness”), and basal area of woody species, but also reduced woody plant species richness and diversity. In the grazed area, the shrubs Baccharis latifolia (Chilca) and Salvia sp. (Salvia) were the most abundant. The combined effect of grazing and shading from the shrubs reduced herbaceous vegetation by 52 to 92%. In the grazing/seed addition experiment, grazing increased establishment of woody seedlings, particularly of the shrub Verbesina arborea (camargo), but the largest effect was seed addition. Where grasses are an important barrier to regeneration, grazing can facilitate the establishment of shrubs that create a microhabitat more suitable for the establishment of montane forest tree species.  相似文献   

14.
Tracy  Benjamin F.  Sanderson  Matt A. 《Plant Ecology》2000,149(2):169-180
Pasture lands are an important facet of land use in the northeast United States, yet little is known about their recent diversity. To answer some fundamental questions about the diversity of these pasture lands, we designed a broad survey to document plant species richness using an intensive, multi scale sampling method. We also wanted to learn whether environmental (soils or climate) or land management variables could help explain patterns of species richness. A total of 17 farms, encompassing 37 pastures, were sampled in New York, Pennsylvania, Vermont, Maryland, Massachusetts and Connecticut during July and August 1998. We positively identified a total of 161 different plant species across the study region. Species richness averaged 31.7±1.1 on pastures. Infrequent, transient species that were mostly perennial and annual forbs accounted for 90% of the species richness. Except for a subjective rating of grazing intensity, land management methods were not good predictors of species richness. Over time, it appears that grazing neither reduces nor increases species richness in pastures. Of the environmental variables measured, only soil P explained a significant amount of the variation in species richness. Soil P was inversely related to species richness at the 1m2 scale. Percent SOM was positively associated with species richness at this scale, although weakly. At larger spatial scales, we suggest that patterns of species richness are best explained by the species diversity of soil seed banks, or seed rain, and stochastic recruitment of these species into existing vegetation.  相似文献   

15.
《环境昆虫学报》2013,35(5):572-577
采用无底样框法对四子王旗荒漠草原不同放牧强度下的蝗虫群落进行了取样调查,比较了不同放牧强度下荒漠草原蝗虫群落的丰富度、多样性和均匀度指数及群落中蝗虫种类和数量随季节的动态变化,并对蝗虫种群分布与植物群落特征进行了相关性分析。结果表明,在不同放牧强度下蝗虫的群落结构及时间动态均存在一定差异,说明放牧活动对蝗虫群落结构有明显影响,其中,轻度放牧和重度放牧样地中蝗虫种群总数显著高于其他样地。不同种类的蝗虫群落与放牧强度之间关系表现复杂。  相似文献   

16.
Vertebrate herbivores can be key determinants of grassland plant species richness, although the magnitude of their effects can largely depend on ecosystem and herbivore characteristics. It has been demonstrated that the combined effect of primary productivity and body size is critical when assessing the impact of herbivores on plant richness of perennial-dominated grasslands; however, the interaction of site productivity and herbivore size as determinants of plant richness in annual-dominated pastures remains unknown. We experimentally partitioned primary productivity and herbivore body size (sheep and wild rabbits) to study the effect of herbivores on the plant species richness of a Mediterranean semiarid annual plant community in central Spain over six years. We also analyzed the effect of grazing and productivity on the evenness and species composition of the plant community, and green cover, litter, and plant height. We found that plant richness was higher where the large herbivore was present at high-productivity sites but barely changed at low productivity. The small herbivore did not affect species richness at either productivity site despite its large effects on species composition. We propose that adaptations to resource scarcity and herbivory prevented plant richness changes at low-productivity sites, whereas litter accumulation in the absence of herbivores decreased plant richness at high productivity. Our results are consistent with predictions arising from a long history of grazing and highlight the importance of both large and small herbivores to the maintenance of plant diversity of Mediterranean annual-dominated pastures.  相似文献   

17.
Mixed grazing systems combining sheep and cattle have shown better growth performance for one or both species. This observation has been attributed to their complementary feeding behaviour and the reduced host infection by gastrointestinal nematodes. Less attention has been paid to mixed grazing systems combining goats and cattle. Here, continuously grazing goats mixed with cattle (M) were compared with control goats reared alone (C) under tropical conditions. The comparison was conducted with gastrointestinal nematode-infected (I) and non-infected (nI) goats. Thus, the four treatments were cattle with gastrointestinal nematode-infected goats (MI), gastrointestinal nematode-infected goats alone (CI), cattle with non-infected goats (MnI) and non-infected goats (CnI). Average daily gain (ADG, g/day) and grass production were measured for the four groups of animals (six goats and two heifers treated with MI or MnI) grazing for 3 months on 4 subplots. Monthly measurements were performed over 5-day periods. This pattern was replicated in space for a second set of four subplots and in time for six successive cohorts of animals (bands 1 to 6). The ADG of goats in mixed grazing conditions was higher than controls irrespective of the infection status (32.6 v. 18.4 g/day for MI v. CI; 44.2 v. 33.5 g/day for MnI v. CnI). Concomitantly, the average biomass was lower for mixed grazing animals compared with controls (174 v. 170 for MI and MnI; 235 v. 208 for CI and CnI, respectively), suggesting better use of the sward. For daily BW gain (g/kg DM), mixed grazing also yielded better results than the control (1.88 v. 0.52 g BW/kg DM per day for MI v. CI; 2.08 v. 1.47 g BW/kg DM per day for MnI and CnI). Mixed grazing of goats and heifers offers a promising alternative for increasing goat and overall animal production as well as improving the management of pastures.  相似文献   

18.
Forb populations were sampled on Kansas tallgrass prairie to examine the effects of native (bison) and domestic (cattle) ungulates on plant growth, reproduction, and species abundances. Five locally and regionally abundant native tallgrass prairie perennials, Baptisia bracteata, Oenothera speciosa, Vernonia baldwinii, Solidago missouriensis, and Salvia azurea, were selected for study. Replicate watershed-level treatments included three grazing regimes (ungrazed, grazed by cattle, and grazed by bison), and two spring fire frequencies (annually burned and burned at 4-yr intervals). The results show that forb responses to ungulates in tallgrass prairie are complex and vary significantly among plant species, ungulate species, fire regimes, and plant life history stages. Some forbs (e.g., B. bracteata, O. speciosa, and V. baldwinii) increased in growth and reproduction in grazed sites, indicating competitive release in response to selective grazing of the dominant warm-season matrix grasses. Forbs that reduced performance in grazed sites are likely negatively affected by disturbances generated by ungulate nongrazing activities, because none of the forbs studied were directly consumed by bison or cattle. Large grazers had no detectable effect on the frequency of plant damage by other herbivores or pathogens. Significant effects of grazers on patterns of flowering and seed production were not congruent with their effects on population densities, indicating that variation in sexual reproduction plays a minor role in regulating local population abundances. Furthermore, the native and domestic ungulates differ significantly in their effects on forb growth and reproduction.  相似文献   

19.
Summary The effects of spring grazing by sheep and of natural levels of insect herbivory were studied in 1985 on a limestone field abandoned from arable land for four years. A split-plot design was adopted in which paddocks, arranged in Latin squares, were either left ungrazed or heavily grazed by sheep for ten days in April. Within each paddock plots were either sprayed regularly with Malathion-60 or untreated.Natural levels of insect herbivory, compared to the reduced levels in insecticide-treated plots, had effects of similar magnitude to those from the short burst of spring grazing. Many attributes of the grazed/insecticide-treated sward were either increased or decreased by a factor of two within a season. Both types of herbivore caused changes in the direction of plant succession as well as in its rate. Effects on early successional species were large and similar when caused by either type of herbivore. Effects on later successional species were often smaller, but also showed differences in the action of the two herbivore types, as did effects on sward height, species richness and total cover. The effects of sheep and insect herbivory were not always additive or in the same direction.The results suggest that manipulations of both mammal and insect herbivores may be powerful tools for directing changes in plant community composition.  相似文献   

20.
Isbell FI  Wilsey BJ 《Oecologia》2011,165(3):771-781
Species-rich native grasslands are frequently converted to species-poor exotic grasslands or pastures; however, the consequences of these changes for ecosystem functioning remain unclear. Cattle grazing (ungrazed or intensely grazed once), plant species origin (native or exotic), and species richness (4-species mixture or monoculture) treatments were fully crossed and randomly assigned to plots of grassland plants. We tested whether (1) native and exotic plots exhibited different responses to grazing for six ecosystem functions (i.e., aboveground productivity, light interception, fine root biomass, tracer nitrogen uptake, biomass consumption, and aboveground biomass recovery), and (2) biodiversity-ecosystem functioning relationships depended on grazing or species origin. We found that native and exotic species exhibited different responses to grazing for three of the ecosystem functions we considered. Intense grazing decreased fine root biomass by 53% in exotic plots, but had no effect on fine root biomass in native plots. The proportion of standing biomass consumed by cattle was 16% less in exotic than in native grazed plots. Aboveground biomass recovery was 30% less in native than in exotic plots. Intense grazing decreased aboveground productivity by 25%, light interception by 14%, and tracer nitrogen uptake by 54%, and these effects were similar in native and exotic plots. Increasing species richness from one to four species increased aboveground productivity by 42%, and light interception by 44%, in both ungrazed and intensely grazed native plots. In contrast, increasing species richness did not influence biomass production or resource uptake in ungrazed or intensely grazed exotic plots. These results suggest that converting native grasslands to exotic grasslands or pastures changes ecosystem structure and processes, and the relationship between biodiversity and ecosystem functioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号