首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
The distribution of tfdAα and cadA, genes encoding 2,4-dichlorophenoxyacetate (2,4-D)-degrading proteins which are characteristic of the 2,4-D-degrading Bradyrhizobium sp. isolated from pristine environments, was examined by PCR and Southern hybridization in several Bradyrhizobium strains including type strains of Bradyrhizobium japonicum USDA110 and Bradyrhizobium elkanii USDA94, in phylogenetically closely related Agromonas oligotrophica and Rhodopseudomonas palustris, and in 2,4-D-degrading Sphingomonas strains. All strains showed positive signals for tfdAα, and its phylogenetic tree was congruent with that of 16S rRNA genes in α-Proteobacteria, indicating evolution of tfdAα without horizontal gene transfer. The nucleotide sequence identities between tfdAα and canonical tfdA in β- and γ-Proteobacteria were 46 to 57%, and the deduced amino acid sequence of TfdAα revealed conserved residues characteristic of the active site of α-ketoglutarate-dependent dioxygenases. On the other hand, cadA showed limited distribution in 2,4-D-degrading Bradyrhizobium sp. and Sphingomonas sp. and some strains of non-2,4-D-degrading B. elkanii. The cadA genes were phylogenetically separated between 2,4-D-degrading and nondegrading strains, and the cadA genes of 2,4-D degrading strains were further separated between Bradyrhizobium sp. and Sphingomonas sp., indicating the incongruency of cadA with 16S rRNA genes. The nucleotide sequence identities between cadA and tftA of 2,4,5-trichlorophenoxyacetate-degrading Burkholderia cepacia AC1100 were 46 to 53%. Although all root nodule Bradyrhizobium strains were unable to degrade 2,4-D, three strains carrying cadA homologs degraded 4-chlorophenoxyacetate with the accumulation of 4-chlorophenol as an intermediate, suggesting the involvement of cadA homologs in the cleavage of the aryl ether linkage. Based on codon usage patterns and GC content, it was suggested that the cadA genes of 2,4-D-degrading and nondegrading Bradyrhizobium spp. have different origins and that the genes would be obtained in the former through horizontal gene transfer.  相似文献   

2.
3.
The tfdB gene encoding chlorophenol hydroxylase and its homolog were found in 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading strain RD5-C2, which belongs to Bradyrhizobium sp. of alpha-Proteobacteria. The nucleotide and deduced amino acid sequence identities of the two genes, designated tfdBa and tfdBb, were 60% and 57% respectively. Their nucleotide sequences most closely matched those of previously reported tfdB, which consisted of those from 2,4-D-degrading beta- and gamma-Proteobacteria and Sphingomonas sp. in alpha-Proteobacteria, with 61-67% identity. The TfdBa expressed in Escherichia coli showed the highest activity for 2,4-dichlorophenol but a narrower range of activity for the other chlorophenols than previously reported TfdBs. In the case of TfdBb, however, no observable activity for any chlorophenols or phenol was detected, although production of a protein with an appropriate molecular size was observed. Based on codon usage patterns and the GC content of the genes, it probable that the tfdBa genes in the 2,4-D-degrading Bradyrhizobium sp. were obtained through horizontal gene transfer.  相似文献   

4.
To elucidate the phylogenetic relationships between Thai soybean bradyrhizobia and USDA strains of Bradyrhizobium, restriction fragment length polymorphism (RFLP) analysis using the nifDK gene probe and sequencing of the partial 16S rRNA gene were performed. In our previous work, Thai isolates of Bradyrhizobium sp. (Glycine max) were separated clearly from Bradyrhizobium japonicum and Bradyrhizobium elkanii based on the RFLP analysis using the nodDYABC gene probe. RFLP analysis using the nifDK gene probe divided 14 Thai isolates and eight USDA strains of B. japonicum into different groups, respectively, but categorized into the same cluster. All of seven strains within these Thai isolates had the same sequence of the partial 16S rRNA gene, and it was an intermediate sequence between those of B. japonicum USDA 110 and B. elkanii USDA 76T. Furthermore, three USDA strains of B. japonicum, USDA of (B. japonicum ATCC 10324T), USDA 115 and USDA 129, had the same partial 16S rRNA gene sequence that seven Thai isolates had. These results suggest that Thai isolates of Bradyrhizobium sp. (Glycine max) are genetically distinct from USDA strains of B. japonicum and B. elkanii, but also indicate a close relationship between Thai isolates and USDA strains of B. japonicum.  相似文献   

5.
The 2,4-dichlorophenoxyacetate (2,4-D)/alpha-ketoglutarate dioxygenase gene (tfdA) homolog designated tfdAalpha was cloned and characterized from 2,4-D-degrading bacterial strain RD5-C2. This Japanese upland soil isolate belongs to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in the alpha subdivision of the class Proteobacteria on the basis of its 16S ribosomal DNA sequence. Sequence analysis showed 56 to 60% identity of tfdAalpha to representative tfdA genes. A MalE-TfdAalpha fusion protein expressed in Escherichia coli exhibited about 10 times greater activity for phenoxyacetate than 2,4-D in an alpha-ketoglutarate- and Fe(II)-dependent reaction. The deduced amino acid sequence of TfdAalpha revealed a conserved His-X-Asp-X(146)-His-X(14)-Arg motif characteristic of the active site of group II alpha-ketoglutarate-dependent dioxygenases. The tfdAalpha genes were also detected in 2,4-D-degrading alpha-Proteobacteria previously isolated from pristine environments in Hawaii and in Saskatchewan, Canada (Y. Kamagata, R. R. Fulthorpe, K. Tamura, H. Takami, L. J. Forney, and J. M. Tiedje, Appl. Environ. Microbiol. 63:2266-2272, 1997). These findings indicate that the tfdA genes in beta- and gamma-Proteobacteria and the tfdAalpha genes in alpha-Proteobacteria arose by divergent evolution from a common ancestor.  相似文献   

6.
利用16S rRNA基因RFLP、16S rRNA基因序列分析以及16S-23S rRNA IGS PCR RFLP技术对分离自我国南北大豆产区的慢生大豆根瘤菌进行了群体遗传多样性和系统发育研究。16S rRNA基因PCR RFLP分析以及16S rRNA基因序列分析结果表明:所有供试慢生大豆根瘤菌可分为B.japonicum和B.elkanii两个类群,其中属于B.japonicum的为优势种群,占供试菌株的91%,属于B.elkanii的仅占9%,多样性水平较低。16S-23S rRNA IGS PCRRFLP研究结果表明:属于B.japonicum的慢生根瘤菌具有较丰富的遗传多样性,在69%的相似性水平上可分为群Ⅰ和群Ⅱ两大类群。群I的菌株以分离自黑龙江和河北等北部区域的菌株为代表,群Ⅱ的菌株以分离自广西和江苏等南部地域的菌株为代表,反映出明显的地域特征。两群菌株在系统发育上均与USDA6、USDA110和USDA122等B.japonicum的模式或代表菌株有差异。  相似文献   

7.
Enzyme electrophoresis and rRNA sequencing were used to analyze relationships of Bradyrhizobium sp. nodule bacteria from four papilionoid legumes (Clitoria javitensis, Erythrina costaricensis, Rhynchosia pyramidalis, and Desmodium axillare) growing on Barro Colorado Island (BCI), Panama. Bacteria with identical multilocus allele profiles were commonly found in association with two or more legume genera. Among the 16 multilocus genotypes (electrophoretic types [ETs]) detected, six ETs formed a closely related cluster that included isolates from all four legume taxa. Bacteria from two other BCI legumes (Platypodium and Machaerium) sampled in a previous study were also identical to certain ETs in this group. Isolates from different legume genera that had the same ET had identical nucleotide sequences for both a 5' portion of the 23S rRNA and the nearly full-length 16S rRNA genes. These results suggest that Bradyrhizobium genotypes with low host specificity may be prevalent in this tropical forest. Parsimony analysis of 16S rRNA sequence variation indicated that most isolates were related to Bradyrhizobium japonicum USDA 110, although one ET sampled from C. javitensis had a 16S rRNA gene highly similar to that of Bradyrhizobium elkanii USDA 76. However, this isolate displayed a mosaic structure within the 5' 23S rRNA region: one 84-bp segment was identical to that of BCI isolate Pe1-3 (a close relative of B. japonicum USDA 110, based on 16S rRNA data), while an adjacent 288-bp segment matched that of B. elkanii USDA 76. This mosaic structure is one of the first observations suggesting recombination in nature between Bradyrhizobium isolates related to B. japonicum versus B. elkanii.  相似文献   

8.
Many undomesticated legumes harbor nodule bacteria related to the soybean symbiont Bradyrhizobium elkanii, but little is known about their phylogenetic relationships or geographic distribution. Sequences of ribosomal genes (16S rRNA and partial 23S rRNA) and the nitrogenase alpha-subunit gene (nifD) were analyzed in 22 isolates of this group sampled from diverse legumes in Korea, Japan, the USA, Mexico, Costa Rica and Panama. Some strains from Asia and North America shared identical sequences for both ribosomal genes. However, pairs of strains with closely related nifD sequences were almost never found in different regions. The major exceptions involved North American isolates B. elkanii USDA 76 and USDA 94, which had nifD sequences highly similar to certain Korean strains. However, 16S rRNA sequences of USDA 76 and USDA 94 were closely related to Central American rather than Asian bradyrhizobia, implying that these strains are genetic mosaics combining sequences from distinct ancestral areas. Several other conflicts between rRNA and nifD tree topologies indicated that the genealogical histories of these loci have been influenced by recurrent lateral gene transfer events.  相似文献   

9.
Enzyme electrophoresis and sequencing of rRNA and dnaK genes revealed high genetic diversity among root nodule bacteria from the Costa Rican trees Andira inermis, Dalbergia retusa, Platymiscium pinnatum (Papilionoideae tribe Dalbergieae) and Lonchocarpus atropurpureus (Papilionoideae tribe Millettieae). A total of 21 distinct multilocus genotypes [ETs (electrophoretic types)] was found among the 36 isolates analyzed, and no ETs were shared in common by isolates from different legume hosts. However, three of the ETs from D. retusa were identical to Bradyrhizobium sp. isolates detected in prior studies of several other legume genera in both Costa Rica and Panama. Nearly full-length 16S rRNA sequences and partial 23S rRNA sequences confirmed that two isolates from D. retusa were highly similar or identical to Bradyrhizobium strains isolated from the legumes Erythrina and Clitoria (Papilionoideae tribe Phaseoleae) in Panama. rRNA sequences for five isolates from L. atropurpureus, P. pinnatum and A. inermis were not closely related to any currently known strains from Central America or elsewhere, but had affinities to the reference strains Bradyrhizobium japonicum USDA 110 (three isolates) or to B. elkanii USDA 76 (two isolates). A phylogenetic tree for 21 Bradyrhizobium strains based on 603 bp of the dnaK gene showed several significant conflicts with the rRNA tree, suggesting that genealogical relationships may have been altered by lateral gene transfer events.  相似文献   

10.
Partial sequences of three nod genes (nodC, nodD1, and nodA 5' flanking region) and of 16S and 23S rDNA were obtained from isolates of Bradyrhizobium sp. associated with the native North American legume Amphicarpaea bracteata. Isolates from Amphicarpaea had identical sequences in the three nod gene regions, but differed from all other Bradyrhizobium taxa at > 10% of nucleotide sites. Parsimony analysis of all nod gene segments indicated a phylogenetic relationship of these bacteria to B. elkanii, with B. japonicum diverging prior to the diversification of these taxa. All Bradyrhizobium isolates from Amphicarpaea were also identical to B. elkanii in the size of the intervening sequence (IVS) in the 5' region of the 23S rRNA gene, while B. japonicum had an IVS length variant with 29 additional nucleotides. Parsimony analysis of both 16S and 23S partial rDNA sequences grouped Bradyrhizobium sp. isolates from Amphicarpaea into a clade together with B. elkanii, consistent with the relationships inferred from nod sequences.  相似文献   

11.
DNA sequencing and polymerase chain reaction (PCR) assays with lineage-specific primers were used to analyze the diversity of 276 isolates of Bradyrhizobium sp. nodule bacteria associated with 13 native legumes species in the northeastern United States, representing eight genera in six legume tribes. A PCR screen with two primer pairs in the rRNA region indicated that seven of the legume species were exclusively associated with strains having markers resembling Bradyrhizobium elkanii, while the remaining six host species harbored strains related to both B. elkanii and Bradyrhizobium japonicum. Sequence analysis of 22 isolates for portions of 16S rRNA and 23S rRNA yielded congruent phylogenetic trees and showed that isolates from different legume genera often shared similar or identical sequences. However, trees inferred from portions of two other genes (alpha-ketoglutarate dioxygenase gene (tfdA), the alpha-subunit of nitrogenase (nifD)) differed significantly from the rRNA phylogeny. Thus, for Bradyrhizobium populations in this region, lateral gene transfer events appear to have altered genealogical relationships of different portions of the genome. These results extend the number of likely cases of gene transfer between divergent taxa of Bradyrhizobium (from members of the B. elkanii lineage to the B. japonicum group) and suggest that transfers have also occurred among separate subgroups of the B. elkanii lineage.  相似文献   

12.
The Brazilian inoculant strains 29W and 587 were found to be members of Bradyrhizobium elkanii primarily on the basis of 16S rRNA gene sequences identical to that of B. elkanii USDA76 and on the basis of reactivity with antibodies against serogroups 76 and 31, respectively. The agronomic consequences of using strains of B. elkanii as soybean inoculants are discussed.  相似文献   

13.
The cowpea (Vigna unguiculata L.), peanut (Arachis hypogaea L.), and mung bean (Vigna radiata L.) belong to a group of plants known as the "cowpea miscellany" plants, which are widely cultivated throughout the tropic and subtropical zones of Africa and Asia. However, the phylogeny of the rhizobial strains that nodulate these plants is poorly understood. Previous studies have isolated a diversity of rhizobial strains from cowpea miscellany hosts and have suggested that, phylogenetically, they are from different species. In this work, the phylogeny of 42 slow-growing rhizobial strains, isolated from root nodules of cowpea, peanut, and mung bean from different geographical regions of China, was investigated using sequences from the 16S rRNA, atpD and glnII genes, and the 16S-23S rRNA intergenic spacer. The indigenous rhizobial strains from the cowpea miscellany could all be placed in the genus Bradyrhizobium , and Bradyrhizobium liaoningense and Bradyrhizobium yuanmingense were the main species. Phylogenies derived from housekeeping genes were consistent with phylogenies generated from the ribosomal gene. Mung bean rhizobia clustered only into B. liaoningense and B. yuanmingense and were phylogenetically less diverse than cowpea and peanut rhizobia. Geographical origin was significantly reflected in the phylogeny of mung bean rhizobia. Most cowpea rhizobia were more closely related to the 3 major groups B. liaoningense, B. yuanmingense, and Bradyrhizobium elkanii than to the minor groups Bradyrhizobium japonicum or Bradyrhizobium canariense . However, most peanut rhizobia were more closely related to the 2 major groups B. liaoningense and B. yuanmingense than to the minor group B. elkanii.  相似文献   

14.
The USDA, ARS National Rhizobium Germplasm Collection contains 143 accessions of slow-growing soybean strains among which there are 17 distinct serological groups. However, 11 strains appear to have no serological affinity with the 17 serogroups. Therefore, we determined whether these strains were diverse and examined their phylogenetic placement. Nine strains formed nitrogen-fixing symbioses with soybean indicating that these accessions were not contaminants. We concluded from results of amplified fragment length polymorphism (AFLP) analysis, using 3 selective primers with 8 strains, that they were genetically dissimilar. Nine strains were examined for their fatty acid composition using fatty acid methyl ester (FAME) derivatives. The FAME results with 5 strains and serotype strains of Bradyrhizobium elkanii were similar, while results with each of the remaining 2 pairs were either similar to the type strain of Bradyrhizobium japonicum (USDA 6) or to USDA 110. Evolutionary history of 9 strains was reconstructed from sequence divergence of a combination of the complete 16S rRNA gene, the internally transcribed spacer region, and about 400 bases of the 5' end of the 23S rRNA gene. Placement of 5 strains was nested within B. elkanii, 2 with USDA 110, and the other 2 with USDA 6. We concluded that soybean isolates that cannot be placed within one of the 17 established serogroups are phenotypically and genetically as diverse as the serotype strains.  相似文献   

15.
The occurrence of hopanoid lipids in Bradyrhizobium bacteria   总被引:2,自引:0,他引:2  
Abstract Lipid extraction procedures followed by GLC and GLC-MS analysis were used to investigate the triterpenoid content in Bradyrhizobium and Rhizobium bacteria. Unlike the tested strains of Rhizobium bacteria, a range of triterpenoids e.g., squalene and different classes of hopanoid derivatives were detected in bacteria from all Bradyrhizobium strains investigated (different strains from Bradyrhizobium japonicum, Bradyrhizobium elkanii as well as Bradyrhizobium sp.). Furthermore, related compounds were identified from some hopanoid lipids (e.g., diplopterol) that carried an additional methyl group in their molecular structure. The hopanoid content was high in some strains and accounted for more than 40% of the total lipid fraction (e.g., in strains Bradyrhizobium japonicum USDA 110 and USDA 31), while other strains contained only about a tenth of that amount (e.g., Bradyrhizobium japonicum ATCC 10324 and Bradyrhizobium sp. ( Lupinus ) ATCC 10319).  相似文献   

16.
Previously, restriction fragment length polymorphism analysis using the nodD1YABC gene probe showed the genetic diversity of common nodD1ABC gene regions of Bradyrhizobium japonicum, Bradyrhizobium elkanii, and the Thai soybean Bradyrhizobium. The nodD1 sequences of representative strains of the 3 groups differed phylogenetically, suggesting that responses of NodD1 proteins of the 3 Bradyrhizobium groups to diverse flavonoids may differ. To confirm this hypothesis, 6 representative strains were chosen from the 3 Bradyrhizobium groups. Six reporter strains were constructed, all carrying the pZB32 plasmid, which contains a nod box and the nodY-lacZ fusion of B. japonicum USDA 110. Differences in nodY-lacZ expression among the strains in response to 37 flavonoid compounds at various concentrations were evaluated. Of those compounds, prunetin (4',5-dihydroxy-7-methoxyisoflavone) and esculetin (6,7-dihydroxycoumarin) were identified as Bradyrhizobium group-specific nod gene inducers. Esculetin showed nod gene induction activities unique to Thai Bradyrhizobium strains. The levels of nodY-lacZ induction among B. japonicum and Thai Bradyrhizobium strains increased with increasing concentration of prunetin, whereas, those in B. elkanii strains did not.  相似文献   

17.
Although natural selection appears to favor the elimination of gene redundancy in prokaryotes, multiple copies of each rRNA-encoding gene are common on bacterial chromosomes. Despite this conspicuous deviation from single-copy genes, no phenotype has been consistently associated with rRNA gene copy number. We found that the number of rRNA genes correlates with the rate at which phylogenetically diverse bacteria respond to resource availability. Soil bacteria that formed colonies rapidly upon exposure to a nutritionally complex medium contained an average of 5.5 copies of the small subunit rRNA gene, whereas bacteria that responded slowly contained an average of 1.4 copies. In soil microcosms pulsed with the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), indigenous populations of 2,4-D-degrading bacteria with multiple rRNA genes ( = 5.4) became dominant, whereas populations with fewer rRNA genes ( = 2.7) were favored in unamended controls. These findings demonstrate phenotypic effects associated with rRNA gene copy number that are indicative of ecological strategies influencing the structure of natural microbial communities.  相似文献   

18.
采用PCR-RFLP技术在不同水平上鉴定大豆根瘤菌   总被引:2,自引:0,他引:2  
采用16S rRNA基因PCR扩增与限制性酶切片段多态性分析(RFLP)技术对选自弗氏中华根瘤菌(S.fredii)、大豆慢生根瘤菌(B.japonicum)和埃氏慢生根瘤菌(B.elkanii)的19株代表菌进行了比较分析,根据用3种限制性内切酶的RFLP分析结果,可将供试菌株分为S.fredii,B.japonicum, B.elkanii Ⅱ和B.elkanii Ⅱa等4种基因型。各类菌株之间没有交叉,因此本研究采用的PCR-RFLP技术不失为一种快速鉴别大豆根瘤菌的新方法。采用本技术已将分离自中国的22株快生菌和19株慢生菌分别鉴定为S.frediiB.japonicum。对供试参比菌株和野生型菌株进行的16S~23S基因间隔DNA(IGS)的PCR-RFLP分析结果表明:S.frediiB.japonicum菌株的IGS长度不同,所有供试S.fredii菌株的IGS为2.1 kb,而供试B.japonicum菌株则为2.0 kb。依据RFLP的差异,可将来自中国两个不同地区的S.fredii株区分为2个基因型,而来自中国东北黑龙江地区的19株B.japonicum菌株则可分为11个基因型。对上述野生型菌株还进行了REP-PCR和ERIC-PCR分析并确定其具有菌株水平的特异性。  相似文献   

19.
Ethiopian Bradyrhizobium strains isolated from root nodules of Crotalaria spp., Indigofera spp., Erythina brucei and soybean (Glycine max) represented genetically diverse phylogenetic groups of the genus Bradyrhizobium. Strains were characterized using the amplified fragment length polymorphism fingerprinting technique (AFLP) and multilocus sequence analysis (MLSA) of core and symbiotic genes. Based on phylogenetic analyses of concatenated recA-glnII-rpoB-16S rRNA genes sequences, Bradyrhizobium strains were distributed into fifteen phylogenetic groups under B. japonicum and B. elkanii super clades. Some of the isolates belonged to the species B. yuanmingense, B. elkanii and B. japonicum type I. However, the majority of the isolates represented unnamed Bradyrhizobium genospecies and of these, two unique lineages that most likely represent novel Bradyrhizobium species were identified among Ethiopian strains. The nodulation nodA gene sequence analysis revealed that all Ethiopian Bradyrhizobium isolates belonged to nodA sub-clade III.3. Strains were further classified into 14 groups together with strains from Africa, as well as some originating from the other tropical and subtropics regions. Strains were also clustered into 14 groups in nodY/K phylogeny similarly to the nodA tree. The nifH phylogenies of the Ethiopian Bradyrhizobium were generally also congruent with the nodA gene phylogeny, supporting the monophyletic origin of the symbiotic genes in Bradyrhizobium. The phylogenies of nodA and nifH genes were also partially congruent with that inferred from the concatenated core genes sequences, reflecting that the strains obtained their symbiotic genes vertically from their ancestor as well as horizontally from more distantly related Bradyrhizobium species.  相似文献   

20.
Twenty-two rhizobial strains isolated from the root nodules of two Chinese peanut cultivars (Arachis hypogaea L. Tianfu no. 3 and a local cultivar) growing at four different sites in the Sichuan province, Southwest China, were characterized by growth rate, rep-PCR, PCR-RFLP of 16S rDNA, partial sequencing of ribosomal genes, and fatty acid-methyl ester analysis (FAME), and compared with strains representing Bradyrhizobium japanicum, B. elkanii and other unclassified Bradyrhizobium sp. All peanut isolates from Sichuan were bradyrhizobia. Dendrograms constructed using the rep-PCR fingerprints grouped the strains mainly according to their geographic and cultivar origin. Based on PCR-RFLP and partial sequence analysis of 16S rDNA it appears that peanut bradyrhizobial strains from Sichuan are similar to peanut strains from Africa and Israel, and closely related to B. japonicum. In contrast, analysis of FAME data using two-dimensional principal component analysis indicated that Bradyrhizobium sp. (Arachis) were similar to, but slightly different from other bradyrhizobia. The presence and level of fatty acid 16:1 w5c was the distinguishing feature. The results of PCR-RFLP of the 16S rRNA gene, the partial sequence analysis of 16S rDNA, and FAME were in good agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号