首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
2.
3.
Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the “seed” sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3′ to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide.  相似文献   

4.
RNA interference (RNAi) has become an invaluable tool for functional genomics. A critical use of this tool depends on an understanding of the factors that determine the specificity and activity of the active agent, small interfering RNA (siRNA). Several studies have concluded that tolerance of mutations can be considerable and hence lead to off-target effects. In this study, we have investigated in vivo the toleration of wobble (G:U) mutations in high activity siRNAs against Flap Endonuclease 1 (Fen1) and Aquaporin-4 (Aqp4). Mutations in the central part of the antisense strand caused a pronounced decrease in activity, while mutations in the 5′ and 3′ends were tolerated very well. Furthermore, based on analysis of nine different mutated siRNAs with widely differing intrinsic activities, we conclude that siRNA activity can be significantly enhanced by wobble mutations (relative to mRNA), in the 5′ terminal of the antisense strand. These findings should facilitate design of active siRNAs where the target mRNA offers limited choice of siRNA positions.  相似文献   

5.
Walton SP  Wu M  Gredell JA  Chan C 《The FEBS journal》2010,277(23):4806-4813
The discovery of RNA interference (RNAi) generated considerable interest in developing short interfering RNAs (siRNAs) for understanding basic biology and as the active agents in a new variety of therapeutics. Early studies showed that selecting an active siRNA was not as straightforward as simply picking a sequence on the target mRNA and synthesizing the siRNA complementary to that sequence. As interest in applying RNAi has increased, the methods for identifying active siRNA sequences have evolved from focusing on the simplicity of synthesis and purification, to identifying preferred target sequences and secondary structures, to predicting the thermodynamic stability of the siRNA. As more specific details of the RNAi mechanism have been defined, these have been incorporated into more complex siRNA selection algorithms, increasing the reliability of selecting active siRNAs against a single target. Ultimately, design of the best siRNA therapeutics will require design of the siRNA itself, in addition to design of the vehicle and other components necessary for it to function in vivo. In this minireview, we summarize the evolution of siRNA selection techniques with a particular focus on one issue of current importance to the field, how best to identify those siRNA sequences likely to have high activity. Approaches to designing active siRNAs through chemical and structural modifications will also be highlighted. As the understanding of how to control the activity and specificity of siRNAs improves, the potential utility of siRNAs as human therapeutics will concomitantly grow.  相似文献   

6.
7.
8.
RNA interference (RNAi) serves as a powerful and widely used gene silencing tool for basic biological research and is being developed as a therapeutic avenue to suppress disease-causing genes. However, the specificity and safety of RNAi strategies remains under scrutiny because small inhibitory RNAs (siRNAs) induce off-target silencing. Currently, the tools available for designing siRNAs are biased toward efficacy as opposed to specificity. Prior work from our laboratory and others’ supports the potential to design highly specific siRNAs by limiting the promiscuity of their seed sequences (positions 2–8 of the small RNA), the primary determinant of off-targeting. Here, a bioinformatic approach to predict off-targeting potentials was established using publically available siRNA data from more than 50 microarray experiments. With this, we developed a specificity-focused siRNA design algorithm and accompanying online tool which, upon validation, identifies candidate sequences with minimal off-targeting potentials and potent silencing capacities. This tool offers researchers unique functionality and output compared with currently available siRNA design programs. Furthermore, this approach can greatly improve genome-wide RNAi libraries and, most notably, provides the only broadly applicable means to limit off-targeting from RNAi expression vectors.  相似文献   

9.
10.
11.
Within the recent years, RNA interference (RNAi) has become an almost-standard method for in vitro knockdown of any target gene of interest. Now, one major focus is to further explore its potential in vivo, including the development of novel therapeutic strategies. From the mechanism, it becomes clear that small interfering RNAs (siRNAs) play a pivotal role in triggering RNAi. Thus, the efficient delivery of target gene-specific siRNAs is one major challenge in the establishment of therapeutic RNAi. Numerous studies, based on different modes of administration and various siRNA formulations and/or modifications, have already accumulated promising results. This applies to various animal models covering viral infections, cancer and multiple other diseases. Continuing efforts will lead to the development of efficient and “double-specific” drugs, comprising of siRNAs with high target gene specificity and of nanoparticles enhancing siRNA delivery and target organ specificity.  相似文献   

12.
Despite the widespread application of RNA interference (RNAi) as a research tool for diverse purposes, the key step of strand selection of siRNAs during the formation of RNA-induced silencing complex (RISC) remains poorly understood. Here, using siRNAs targeted to the complementary region of Survivin and the effector protease receptor 1 (EPR-1), we show that both strands of the siRNA duplex can find their target mRNA and are equally eligible for assembly into Argonaute 2 (Ago2) of RISC in HEK293 cells. Transfection of the synthetic siRNA duplexes with different thermodynamic profiles or short hairpin RNA (shRNA) vectors that generate double-stranded RNAs (dsRNAs), permitting processing specifically from either the 5′ or 3′ end of the incipient siRNA, results in the degradation of the respective target mRNAs of either strand of the siRNA duplex with comparable efficiencies. Thus, while most RNAi reactions may follow the thermodynamic asymmetry rule in strand selection, our study suggests an exceptional mode for certain siRNAs in which both strands of the duplex are competent in sponsoring RNAi, and implies additional factors that might dictate the RNAi targets.  相似文献   

13.

Background  

Gene silencing using exogenous small interfering RNAs (siRNAs) is now a widespread molecular tool for gene functional study and new-drug target identification. The key mechanism in this technique is to design efficient siRNAs that incorporated into the RNA-induced silencing complexes (RISC) to bind and interact with the mRNA targets to repress their translations to proteins. Although considerable progress has been made in the computational analysis of siRNA binding efficacy, few joint analysis of different RNAi experiments conducted under different experimental scenarios has been done in research so far, while the joint analysis is an important issue in cross-platform siRNA efficacy prediction. A collective analysis of RNAi mechanisms for different datasets and experimental conditions can often provide new clues on the design of potent siRNAs.  相似文献   

14.
15.
16.
RNA interference (RNAi) is a process in which double-strand RNA (dsRNA) directs the specific degradation of a corresponding target mRNA. The mediators of this process are small dsRNAs, of ~21 bp in length, called small interfering RNAs (siRNAs). siRNAs, which can be prepared in vitro in a number of ways and then transfected into cells, can direct the degradation of corresponding mRNAs inside these cells. Hence, siRNAs represent a powerful tool for studying gene functions, as well as having the potential of being highly specific pharmaceutical agents. Some limitations in using this technology exist because the preparation of siRNA in vitro and screening for siRNAs efficient in RNAi can be expensive and time-consuming processes. Here, we demonstrate that custom oligonucleotide arrays can be efficiently used for the preparation of defined mixtures of siRNAs for the silencing of exogenous and endogenous genes. The method is fast, inexpensive, does not require siRNA optimization and has a number of advantages over methods utilizing enzymatic preparation of siRNAs by digestion of longer dsRNAs, as well as methods based on chemical synthesis of individual siRNAs or their DNA templates.  相似文献   

17.
In the present study, the relationship between short interfering RNA (siRNA) sequence and RNA interference (RNAi) effect was extensively analyzed using 62 targets of four exogenous and two endogenous genes and three mammalian and Drosophila cells. We present the rules that may govern siRNA sequence preference and in accordance with which highly effective siRNAs essential for systematic mammalian functional genomics can be readily designed. These rules indicate that siRNAs which simultaneously satisfy all four of the following sequence conditions are capable of inducing highly effective gene silencing in mammalian cells: (i) A/U at the 5′ end of the antisense strand; (ii) G/C at the 5′ end of the sense strand; (iii) at least five A/U residues in the 5′ terminal one-third of the antisense strand; and (iv) the absence of any GC stretch of more than 9 nt in length. siRNAs opposite in features with respect to the first three conditions give rise to little or no gene silencing in mammalian cells. Essentially the same rules for siRNA sequence preference were found applicable to DNA-based RNAi in mammalian cells and in ovo RNAi using chick embryos. In contrast to mammalian and chick cells, little siRNA sequence preference could be detected in Drosophila in vivo RNAi.  相似文献   

18.
19.
Small-interfering RNAs (siRNAs) assemble into RISC, the RNA-induced silencing complex, which cleaves complementary mRNAs. Despite their fluctuating efficacy, siRNAs are widely used to assess gene function. Although this limitation could be ascribed, in part, to variations in the assembly and activation of RISC, downstream events in the RNA interference (RNAi) pathway, such as target site accessibility, have so far not been investigated extensively. In this study we present a comprehensive analysis of target RNA structure effects on RNAi by computing the accessibility of the target site for interaction with the siRNA. Based on our observations, we developed a novel siRNA design tool, RNAxs, by combining known siRNA functionality criteria with target site accessibility. We calibrated our method on two data sets comprising 573 siRNAs for 38 genes, and tested it on an independent set of 360 siRNAs targeting four additional genes. Overall, RNAxs proves to be a robust siRNA selection tool that substantially improves the prediction of highly efficient siRNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号