首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To evaluate the effect of galactose metabolic disorders on the brain Na+,K+-ATPase in suckling rats. Separate preincubations of various concentrations (1-16 mM) of the compounds galactose-1-phosphate (Gal-1-P) and galactitol (galtol) with whole brain homogenates at 37 degrees C for 1 h resulted in a dose dependent inhibition of the enzyme whereas the pure enzyme (from porcine cerebral cortex) was stimulated. Glucose-1-phosphate (Glu-1-P) or galactose (Gal) stimulated both rat brain Na+,K+-ATPase and pure enzyme. A mixture of Gal-1-P (2 mM), galtol (2 mM) and Gal (4 mM), concentrations commonly found in untreated patients with classical galactosemia, caused a 35% (p < 0.001) rat brain enzyme inhibition. Additionally, incubation of a mixture of galtol (2 mM) and Gal (1 mM), which is usually observed in galactokinase deficient patients, resulted in a 25% (p < 0.001) brain enzyme inactivation. It is suggested that: a) The indirect inhibition of the brain Na+,K+-ATPase by Gal-1-P should be due to the presence of the epimer Gal and phosphate and that the pure enzyme direct activation by Gal-1-P and Glu-1-P to the presence of phosphate only. b) The observed brain Na+,K+-ATPase inhibitions in the presence of toxic concentrations of Gal-1-P and/or galtol could modulate the neural excitability, the metabolic energy production and the catecholaminergic and serotoninergic system.  相似文献   

2.
Galactose 1-phosphate uridyltransferase deficiency causes the accumulation of galactose and galactose 1-phosphate (Gal 1-P) in the blood. We describe a new pulsed amperometric detection method for determining Gal 1-P levels as a pathognomic marker for the diagnosis of galactosemia. The method uses high-performance anion-exchange chromatography with pulsed amperometric detection. In an anion-exchange column, the analytes were separated in 5 min by the eluent mixture of 40 mM NaOH and 40 mM Na2CO3. The detection limit (signal to noise ratio of 3) to Gal 1-P was 30 μg/dL. The linear dynamic range was 3.0-50 mg/dL (r= 0.9999). The mean recoveries of Gal 1-P for intra- and interday assays were 97.55-103.78%. This method clearly separated the type I galactosemia patients from the normal group and is a practical procedure for the rapid diagnosis of galactosemia.  相似文献   

3.
Previously we reported that stable transfection of human UDP-glucose pyrophosphorylase (hUGP2) rescued galactose-1-phosphate uridyltransferase (GALT)-deficient yeast from "galactose toxicity." Here we test in human cell lines the hypothesis that galactose toxicity was caused by excess accumulation of galactose-1-phosphate (Gal-1-P), inhibition of hUGP2, and UDP-hexose deficiency. We found that SV40-transformed fibroblasts derived from a galactosemic patient accumulated Gal-1-P from 1.2+/-0.4 to 5.2+/-0.5 mM and stopped growing when transferred from 0.1% glucose to 0.1% galactose. Control fibroblasts accumulated little Gal-1-P and continued to grow. The GALT-deficient cells had 157+/-10 micromoles UDP-glucose/100 g protein and 25+/-5 micromoles UDP-galactose/100 g protein when grown in 0.1% glucose. The control cells had 236+/-25 micromoles UDP- glucose/100 g protein and 82+/-10 micromoles UDP-galactose/100 g protein when grown in identical medium. When we transfected the GALT-deficient cells with either the hUGP2 or GALT gene, their UDP-glucose content increased to 305+/-28 micromoles/100 g protein (hUGP2-transfected) and 210+/-13 micromoles/100 g protein (GALT-transfected), respectively. Similarly, UDP-galactose content increased to 75+/-12 micromoles/100 g protein (hUGP2-transfected) and 55+/-9 micromoles/100 g protein (GALT-transfected), respectively. Though the GALT-transfected cells grew in 0.1% galactose with little accumulation of Gal-1-P (0.2+/-0.02 mM), the hUGP2-transfected cells grew but accumulated some Gal-1-P (3.1+/-0.4 mM). We found that 2.5 mM Gal-1-P increased the apparent KM of purified hUGP2 for glucose-1-phosphate from 19.7 microM to 169 microM, without changes in apparent Vmax. The Ki of the reaction was 0.47 mM. Gal-1-P also inhibited UDP-N-acetylglucosamine pyrophosphorylase, which catalyzes the formation of UDP-N-acetylglucosamine. We conclude that intracellular concentrations of Gal-1-P found in classic galactosemia inhibit UDP-hexose pyrophosphorylases and reduce the intracellular concentrations of UDP-hexoses. Reduced Sambucus nigra agglutinin binding to glycoproteins isolated from cells with increased Gal-1-P is consistent with the resultant inhibition of glycoprotein glycosylation.  相似文献   

4.
Galactose-1-phosphate uridyltransferase (EC 2.7.7.10), responsible for the conversion of galactose-1-phosphate (Gal-1-P) to uridine diphosphate galactose (UDPgal) was examined in fruit peduncles of Cucumis sativus L. Two uridyltransferases (pyrophosphorylases), from I and II, were partially purified and resolved on a diethylamino-ethyl-cellulose column. Form I can utilize glucose-1-phosphate (Glc-1-P), while form II can utilize either Gal-1-P or Glc-1-P, with a preference for Gal-1-P. Form I was more heat stable than form II. Both Glc-1-P and Gal-1-P activities of form II were inactivated at the same rate by heating. The finding of a uridyltransferase with preference for Gal-1-P indicates that cucumber may have a Gal-1-P uridyltransferase (pyrophosphorylase) pathway for the catabolism of stachyose in the peduncles. The absence of the enzyme UDP-glucose-hexose-1-phosphate uridyltransferase (EC 2.7.7.12) in this tissue rules out catabolism by the classical Leloir pathway. The incorporation of carbon from UDPglc into Glc-1-P as opposed to sucrose may be regulated by the activities of the uridyltransferases. Pyrophosphate, in the same concentration range, inhibits UDP-gal formation (Ki=0.58±0.10 mM) and stimulates Glc-1-P formation. The ratio of units of pyrophosphatase to units of Gal-1-P uridyltransferase was higher in peduncles from growing fruit than from unpollinated fruit. Modulation of carbon partitioning through a uridyltransferase pathway may be a factor controlling growth of the cucumber fruit.Abbreviations Gal-1-P Galactose-1-phosphate - Glc-1-P glucose-1-phosphate - UDPgal uridine diphosphate galactose - UDPglc uridine diphosphate glucose Paper No. 6908 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. The use of trade names in this publication does not imply endorsement by the North Carolina Agricultural Research Service of products named, nor criticism of similar ones not mentioned  相似文献   

5.
The Cucurbitaceae translocate a significant portion of their photosynthate as raffinose and stachyose, which are galactosyl derivatives of sucrose. These are initially hydrolyzed by alpha-galactosidase to yield free galactose (Gal) and, accordingly, Gal metabolism is an important pathway in Cucurbitaceae sink tissue. We report here on a novel plant-specific enzyme responsible for the nucleotide activation of phosphorylated Gal and the subsequent entry of Gal into sink metabolism. The enzyme was antibody purified, sequenced, and the gene cloned and functionally expressed in Escherichia coli. The heterologous protein showed the characteristics of a dual substrate UDP-hexose pyrophosphorylase (PPase) with activity toward both Gal-1-P and glucose (Glc)-1-P in the uridinylation direction and their respective UDP-sugars in the reverse direction. The two other enzymes involved in Glc-P and Gal-P uridinylation are UDP-Glc PPase and uridyltransferase, and these were also cloned, heterologously expressed, and characterized. The gene expression and enzyme activities of all three enzymes in melon (Cucumis melo) fruit were measured. The UDP-Glc PPase was expressed in melon fruit to a similar extent as the novel enzyme, but the expressed protein was specific for Glc-1-P in the UDP-Glc synthesis direction and did not catalyze the nucleotide activation of Gal-1-P. The uridyltransferase gene was only weakly expressed in melon fruit, and activity was not observed in crude extracts. The results indicate that this novel enzyme carries out both the synthesis of UDP-Gal from Gal-1-P as well as the subsequent synthesis of Glc-1-P from the epimerase product, UDP-Glc, and thus plays a key role in melon fruit sink metabolism.  相似文献   

6.
Classic galactosemia, an inborn error of human galactose metabolism, is characterized by a deficiency of the enzyme galactose-1-phosphate uridyltransferase (GALT). The current model for the pathophysiology of this disease ascribes most of its symptoms to the toxicity of intracellular galactose-1-phosphate (Gal-1-P), one of the substrates of GALT which accumulates in the untreated disease state. Recently, a reduction in the intracellular concentration of UDP-Gal (uridine diphosphogalactose), one of the products of GALT, has been described in treated galactosemic patients. We investigated whether galactosemic patients might also have reduced amounts of those macromolecules that depend on UDP-Gal for their biosynthesis. We report a reduction in glycolipids that contain either galactose or its derivative N-acetylgalactosamine and an accumulation of the precursors to these compounds in the brain of a neonate with galactosemia. We also found an imbalance in glycolipids in galactosemic lymphoblasts. This novel biochemical abnormality observed in galactosemic patients is not addressed by dietary galactose-restriction therapy and could explain some of the chronic neurologic and other complications of galactosemia.  相似文献   

7.
The aim of this work was to evaluate, in vitro, the effect of L-alanine (Ala) on suckling rat brain acetylcholinesterase (AChE) and on eel Electrophorus electricus pure AChE inhibited by L-phenylalanine (Phe) as well as to investigate whether Phe or Ala is a competitive inhibitor or an effector of the enzyme. AChE activity was determined in brain homogenates and in the pure enzyme after 1 h preincubation with 1.2 mM of Phe or Ala as well as with Phe plus Ala. The activity of the pure AChE was also determined using as a substrate different amounts of acetylthiocholine. Ala reversed completely the inhibited AChE by Phe (18-20% in 500-600 microM substrate, p<0.01). Lineweaver-Burk plots showed that Vmax remained unchanged. However, Km was found increased with Phe (150%, p<0.001), decreased with Ala alone (50%, p<0.001) and unaltered with Phe plus Ala. It is suggested that: a) Phe presents a competitive inhibitory action with the substrate whereas Ala a competitive activation; b) Ala competition with Phe might unbind the latter from AChE molecule inducing the enzyme stimulation; c) Ala might reverse the inhibitory effect of Phe on brain AChE in phenylketonuric patients, if these results are extended into the in vivo reality.  相似文献   

8.
The surface of the extremely thermophilic archaebacterium Methanothermus fervidus is covered by glycoprotein subunits. The carbohydrate moiety of the surface glycoprtein accounts for about 17 mol%. It is composed of mannose, 3-O-methylglucose, galactose, N-acetylglucosamine and N-acetylgalactosamine. From cell extracts the corresponding surgar-1-phosphates and nucleotide activated derivatives of Man, Gal, GlcNAc and GalNAc were isolated. Furthermore UDP-and dolichyl activated oligosaccharides were obtained. On the basis of the isolated precursors a pathway for the biosynthesis of the oligosaccharide chains is proposed.Abbreviations DNP-Glu N-2,4-dinitrophenyl-glutamic acid - Dol dolichol - Gal galactose - Gal-1-P galactose-1-phosphate - GalNAc N-acetylgalactosamine - GalNAc-1-P N-acetylgalactosamine-1-phosphate - Glc glucose - GlcNAc N-acetylglucosamine - GlcNAc-1-P N-acetylglucosamine-1-phosphate - Man mannose - Man-1-P mannose-1-phosphate - 3-O-MeGlc 3-O-methylglucose - P phosphate - TCA trichloroacetic acid - TLC thin-layer chromatography - Tris tris(hydroxymethyl)aminomethan  相似文献   

9.
A prominent galactose-1-phosphatase was isolated from rat brain and partially purified by chromatography on diethylaminoethyl-Sephacel, hydroxylapatite, and Sephacryl S-300 columns. The galactose-1-phosphatase was separated from alkaline phosphatase, and from two forms of glucose-1-phosphatase. The three columns gave a 10-fold increase in specific activity to 290 mol/min/mg of protein, with a yield of 15%. Of the eight sugar phosphates tested, galactose-1-phosphate was the best substrate for the purified enzyme, followed by glucose-1-phosphate, which was hydrolyzed 40% as rapidly as galactose-1-phosphate. Galactose-1-phosphatase had an optimum pH of 8.5 and a Km value of 2.5 mM for galactose-1-phosphate hydrolysis. Mg2+ was required for activity, and supported half-maximal activity at a concentration of 1.25 mM. Phosphate was the only potent inhibitor found ATP, arsenate, and vanadate caused moderate inhibition of 10 mM levels, whereas AMP, L-homoarginine, and L-phenylalanine stimulated enzyme activity. Galactose-1-phosphatase was determined to have a Stokes radius of 30 A and a sedimentation coefficient of 4.1S. These values were used to calculate a molecular weight of 50,200 and a frictional ratio showing the enzyme to be a globular protein. It is hypothesized that a similar phosphatase may play a role in reducing brain galactose-1-phosphate concentrations in patients with galactosemia.  相似文献   

10.
1. Biochemical studies of the actions of ethanol on the activity of acetylcholinesterase (AChE), isolated from electric eel (Electrophorus electricus) and purified by affinity chromatography, were performed to elucidate ethanol-enzyme-solvent interactions. 2. Ethanol at a low concentration [( EtOH] = 2.7-200 mM) was found to enhance AChE activity slightly and systematically. 3. This observation was consistent with the result from enzyme-kinetic studies that ethanol might noncompetitively activate AChE activity at this lower concentration range. 4. If ethanol alters the hydrophobic site interaction on the enzyme and subsequently induces a favorable conformation for the active center of the enzyme, then a slight increase in the AChE activity in the presence of a low concentration of ethanol will be observed. 5. This speculation was supported by the finding of ethanol's ability to perturb the inhibition of AChE activity by tetrabutylammonium bromide and to affect hydrophobic interaction between this salt and AChE, as investigated by enzyme activity and microcalorimetric measurements. 6. The ethanol effect on the activity of this soluble AChE was found to be distinguishable from that on a membrane-bound AChE. 7. Furthermore, to elucidate the effect of ethanol-solvent interaction on AChE activity, enzyme activity in the presence of much higher concentrations of ethanol was also examined. 8. At [EtOH] greater than 800 mM, ethanol can perturb the structure of water around hydrophobic areas of AChE, causing an instability in the enzyme conformation and subsequently decreasing AChE activity.  相似文献   

11.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

12.
13.
UDP-Glc pyrophosphorylase (UGPase) is an essential enzyme responsible for production of UDP-Glc, which is used in hundreds of glycosylation reactions involving addition of Glc to a variety of compounds. In this study, barley UGPase was characterized with respect to effects of its substrates on activity and quaternary structure of the protein. Its Km values with Glc-1-P and UTP were 0.33 and 0.25 mM, respectively. Besides using Glc-1-P as a substrate, the enzyme had also considerable activity with Gal-1-P; however, the Km for Gal-1-P was very high (>10 mM), rendering this reaction unlikely under physiological conditions. UGPase had a relatively broad pH optimum of 6.5–8.5, regardless of the direction of reaction. The enzyme equilibrium constant was 0.4, suggesting slight preference for the Glc-1-P synthesis direction of the reaction. The quaternary structure of the enzyme, studied by Gas-phase Electrophoretic Mobility Macromolecule Analysis (GEMMA), was affected by addition of either single or both substrates in either direction of the reaction, resulting in a shift from UGPase dimers toward monomers, the active form of the enzyme. The substrate-induced changes in quaternary structure of the enzyme may have a regulatory role to assure maximal activity. Kinetics and factors affecting the oligomerization status of UGPase are discussed.  相似文献   

14.
The activity of phosphoglucose isomerase, its kinetic properties, and the effect of 6-phosphogluconate on its activity in the forward (glucose 6-phosphate----fructose 6-phosphate) and the reverse (fructose 6-phosphate----glucose 6-phosphate) reactions were determined in adult rat brain in vitro. The activity of phosphoglucose isomerase (in nmol/min/mg of whole brain protein) was 1,865 +/- 20 in the forward reaction and 1,756 +/- 32 in the reverse reaction at pH 7.5. It was 1,992 +/- 28 and 2,620 +/- 46, respectively, at pH 8.5. The apparent Km and Vmax of phosphoglucose isomerase were 0.593 +/- 0.031 mM and 2,291 +/- 61 nmol/min/mg of protein, respectively, for glucose 6-phosphate and 0.095 +/- 0.013 mM and 2,035 +/- 98 nmol/min/mg of protein, respectively, for fructose 6-phosphate. The activity of phosphoglucose isomerase was inhibited intensely and competitively by 6-phosphogluconate, with an apparent Ki of 0.048 +/- 0.005 mM for glucose 6-phosphate and 0.042 +/- 0.004 mM for fructose 6-phosphate as the substrate. With glucose 6-phosphate as the substrate, at concentrations from 0.05 to 0.5 mM, the activity of the enzyme was inhibited completely in the presence of 0.5-2.0 mM 6-phosphogluconate. With 0.05-0.2 mM fructose 6-phosphate as the substrate, it was inhibited greater than or equal to 85% at the same concentrations of the inhibitor. No significant changes were observed in the values of Km, Vmax, and Ki for phosphoglucose isomerase in the brain of 6-aminonicotinamide-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Impairment of the human enzyme galactose-1-phosphate uridylyltransferase (GALT) results in the potentially lethal disorder galactosemia; the biochemical basis of pathophysiology in galactosemia remains unknown. We have applied a yeast expression system for human GALT to test the hypothesis that genotype will correlate with GALT activity measured in vitro and with metabolite levels and galactose sensitivity measured in vivo. In particular, we have determined the relative degree of functional impairment associated with each of 16 patient-derived hGALT alleles; activities ranged from null to essentially normal. Next, we utilized strains expressing these alleles to demonstrate a clear inverse relationship between GALT activity and galactose sensitivity. Finally, we monitored accumulation of galactose-1-P, UDP-gal, and UDP-glc in yeast expressing a subset of these alleles. As reported for humans, yeast deficient in GALT, but not their wild type counterparts, demonstrated elevated levels of galactose 1-phosphate and diminished UDP-gal upon exposure to galactose. These results present the first clear evidence in a genetically and biochemically amenable model system of a relationship between GALT genotype, enzyme activity, sensitivity to galactose, and aberrant metabolite accumulation. As such, these data lay a foundation for future studies into the underlying mechanism(s) of galactose sensitivity in yeast and perhaps other eukaryotes, including humans.  相似文献   

16.
Acetylcholinesterase (AChE) activity was determined at varied pH values between 6 and 11 in rat homogenated diaphragm and in eel E. electricus soluble AChE, in the presence or absence of 115 mM NaCl or LiCl. It was observed that by using homogenated diaphragm Li+ stimulated AChE at physiological pH (7-7.4). In control (no cations) a pH "optimum" of 8.6-9 was found, while in presence of NaCl or LiCl "optima" of 9.5 and 10.2 were observed respectively. At optimum pH, AChE activity was about 2 times higher with NaCl, while with LiCl 5 times higher than the control. Preincubation of the enzyme or the homogenate in cations presence at pH 5.5 or pH 12.8 had no effect on the activity, when it was measured at pH "optima". However, without cations only 76% of the activity in optimum pH after preincubation at pH 5.5 was found. These results suggest that: (a) Li+ may neutralize negative charges of AChE more successfully than Na+, resulting in better enzyme activation and stabilization; (b) a possible enzyme desensitization induced by pH changes can be avoided by increasing Na+ concentrations and especially Li+.  相似文献   

17.
We recently identified an enzyme which we have designated inositol polyphosphate 1-phosphatase that hydrolyzes both inositol 1,3,4-trisphosphate (Ins-1,3,4-P3) and inositol 1,4-bisphosphate (Ins-1,4-P2), yielding inositol 3,4-bisphosphate and inositol 4-phosphate, respectively, as products (Inhorn, R. C., Bansal, V.S., and Majerus, P.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 2170-2174). We have now purified the inositol polyphosphate 1-phosphatase 3600-fold from calf brain supernatant. The purified enzyme has an apparent molecular mass of 44,000 daltons as determined by gel filtration and is free of other inositol phosphate phosphatase activities. The enzyme hydrolyzes Ins-1,4-P2 with an apparent Km of approximately 4-5 microM, while it degrades Ins-1,3,4-P3 with an apparent Km of approximately 20 microM. The enzyme hydrolyzes these substrates at approximately the same maximal velocity. Inositol polyphosphate 1-phosphatase shows a sigmoidal dependence upon magnesium ion, with 0.3 mM Mg2+ causing half-maximal stimulation. A Hill plot of the data is linear with a value of n = 1.9, suggesting that the enzyme binds magnesium cooperatively. Calcium and manganese inhibit enzyme activity, with 50% inhibition at approximately 6 microM. Lithium inhibits Ins-1,4-P2 hydrolysis uncompetitively with a Ki of approximately 6 mM. This mechanism of lithium inhibition is similar to that observed for the inositol monophosphate phosphatase (originally designated myo-inositol-1-phosphatase; Hallcher, L.M., and Sherman, W.R. (1980) J. Biol. Chem. 255, 10896-10901), suggesting that these two enzymes are related. Lithium also inhibits Ins-1,3,4-P3 hydrolysis with an estimated Ki of 0.5-1 mM.  相似文献   

18.
The sequential enzyme assay as previously described has been used to study various effects on the three enzymes in human red cells involved in the phosphorylation of galactose: galactokinase, galactose-1-phosphate uridyl transferase and uridine diphospho-galactose-4-epimerase.
  • 1 Enzyme activities in undiluted lysates appear to reflect the respective activities in whole cells.
  • 2 Added extracellular Gal-1-P, G-1-P, UDPGal and UPDG do not affect enzyme activities in whole cells.
  • 3 The kinase and transferase enzymes do not appear to be associated with the membrane fraction of the red cells.
  • 4 Galactokinase activity is inhibited by G-6-P and Gal-1-P, but not by glucose, G-1-P, UDPG, UDPGal, UTP or NAD+. It is inhibited by ATP and ADP in high concentration.
  • 5 Galactose-1-phosphate uridyl transferase activity is inhibited by G-1-P, G-6-P, UDPG, UDPGal, ATP, and ADP. It is not affected by UTP, NAD+, or galactose.
  • 6 Uridine diphospho-galactose-4-epimerase activity is inhibited by UDPG, ATP, ADP, UTP and NADH. It is stimulated by NAD+ and possibly by Gal-1-P. It is unaffected by G-1-P, G-6-P.
  • 7 The rates of the three reactions decrease with decreasing temperature. The activities of transferase and epimerase are inactivated at the same rate, the kinase activity is inactivated more slowly.
  • 8 Dilution experiments indicate the presence in lysates of a pool of UDPG (or, possibly UDPGal) which regulates the activities transferase and the epimerase enzymes.
  • 9 Results of dilution experiments suggest that the radioactive product of the transferase enzyme is different from commercially available UDPGal-u-14C.
  • 10 ATP, UTP and UDPG interact with some substance(s) in the red cell lysate to cause a time dependent inactivation of the epimerase. These interactions are the result of glucose metabolism.
  相似文献   

19.
20.
The kinetics of rat liver glucose-6-phosphatase (D-glucose-6-phosphate phosphohydrolase, EC 3.1.3.9) were studied with intact and detergent-disrupted microsomes from normal and diabetic rats. Glucose-6-P concentrations employed (12 microM to 1.0 mM) spanned the physiologic range. With the enzyme of intact microsomes from both groups, plots of v versus [glucose-6-P] were sigmoid. Hanes plots (i.e. [glucose-6-P]/v versus [glucose-6-P]) were biphasic (concave upwards). A Hill coefficient of 1.45 was determined with substrate concentrations between 12 and 133 microM. Disruption of microsomal integrity abolished these departures from classic kinetic behavior, indicating that sigmoidicity may result from cooperative interaction of glucose-6-P with the glucose-6-phosphatase system at the substrate translocase specific for glucose-6-P. With the enzyme from normal rats the [glucose-6-P] at which the enzyme was maximally sensitive to variations in [glucose-6-P] (which we term "Smax"), determined from plots of dv/d [glucose-6-P] versus [glucose-6-P], was in the physiologic range. The Smax of 0.13 mM corresponded well with the normal steady-state hepatic [glucose-6-P] of 0.16 mM, consistent with glucose-6-phosphatase's function as a regulatory enzyme. With the diabetic enzyme, in contrast, values were 0.30 and 0.07 mM for the Smax and steady-state level, respectively. We suggest that the decreasing sensitivity of glucose-6-phosphatase activity to progressively diminishing glucose-6-P concentration, inherent in its sigmoid kinetics, constitutes a mechanism for the preservation of a residual pool of glucose-6-P for other hepatic metabolic functions in the presence of elevated concentrations of glucose-6-phosphatase such as in diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号