首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
长白山高山冻原植被生物量的分布规律   总被引:7,自引:1,他引:6  
魏晶  吴钢  邓红兵 《应用生态学报》2004,15(11):1999-2004
从物种生物量、优势种器官生物量和植被生物量角度,探讨了长白山高山冻原生态系统生物量的空间变化规律.结果表明,在调查的43种长白山高山冻原植物中,单物种生物量排序前5种植物分别是牛皮杜鹃(Rhododendron chrysanthum)(159.01kg·hm^-2)、笃斯越桔(Vaccinium jiliginosum var.alpinum)(137.52kg·hm^-2)、高山笃斯(Vaccinium uliginosum)(134.7kg·hm^-2)、宽叶仙女木(Dryas octopetala var.asiatica)(131.5kg·hm^-2)圆叶柳(Salix rotundifolia)(128.4kg·hm^-2).它们是长白山高山冻原生态系统的优势种.地下与地上生物量和地下与总生物量之比随海拔升高逐渐增加.植被生物量随海拔升高。总体呈逐渐减小的趋势。植被生物量与海拔高度呈显著负相关.长白山高山冻原生态系统平均生物量为2.21t·hm^-2,对调节长白山小气候、涵养水源、水土保持等生态服务功能的发挥有着重要的作用。同时对固定大气CO2起着汇的作用。  相似文献   

2.
沱江流域亚热带次生植被生物量及其模型   总被引:7,自引:0,他引:7       下载免费PDF全文
 本文采用标准地法、标准木及回归分析法(乔木)和样方收获法(灌木和草本)研究了沱江流域清水河支流次生植被生物量及其分配规律,并从生物量协调性角度探讨了主要树种的适宜性。 1.应用11种回归模型研究沱江流域主要次生植被类型优势种生物量与胸径或材积因子的关系,表明以y=aXb模型相关性最好,应用性强,其相关系数范围在0.946~0.999。 2. 不同群落类型地上部分生物量的大小排序为柏木、栓皮栎林>桤木、柏木林>柏木林>铁仔、黄荆灌丛>马桑灌草丛,其地上部分生物量分别为95.721、77.546、38.719、11.969和4.073t·hm-2。另外两类墨西哥柏林的地上部分生物量分别为21.065和16.810t·hm-2。 3.乡土树种和墨西哥柏根桩及粗根的生物量占各自总根量的比例分别为80.42%和62.09%,其地下部分生物量占各自总生物量的比例分别为23.89%和7.44%,占各自地上部分生物量的比例分别为17.67%和6.9%,表明引入沱江流域的墨西哥柏地上部分和地下部分生物量的不协调,存在潜在的易倒趋势。 4.对比分析和评价了主要次生植被类型及树种生物量分配及垂直结构,生产潜力和防护效能,提出较高演替阶段的群落为该区域多功能的优化模式。  相似文献   

3.
云南松林的根系生物量及其分布规律的研究   总被引:12,自引:0,他引:12  
利用平均标准木机械布点法测定了云南省永仁林业局云南松不同龄组林分的根系生物量及其沿土壤剖面深度的分布规律.结果表明,林分根系总生物量随林龄而增加,幼龄林(15~17年)的根系生物量为8.50 t·hm-2,中龄林(30~32年)为11.70 t·hm-2,成熟林为(>62年) 18.91 t·hm-2.在不同龄组林分中,粗根(>10mm)生物量差异最大(1.5~12.3 t·hm-2),而中根(5~10 mm)(1.4~1.6 t·hm-2)及小根(<5 mm)(5.3~6.2 t·hm-2)的生物量差异最小.根系生物量沿土壤深度迅速减少,约93%的根系生物量集中分布在0~30 cm土层中,深土层(30~115 cm)的根系生物量仅占7%左右.  相似文献   

4.
以粤西黑石顶自然保护区为对象,探讨了南亚热带森林群落演替系列上3个主要演替阶段的代表类型:针叶林(马尾松群落)、针阔混交林(马尾松+吊皮椎+木荷+枫香群落)、南亚热带常绿阔叶林(粘木+小叶胭脂+光叶红豆+黄果厚壳桂群落)的生物量和净第一性生产力及其分配规律。结果表明,针叶林生物量为246.697t·hm^-2,净第一性生产力为14.715t·hm^-2·yr^-1;针阔混交林生物量为287.367t·hm^-2,净第一性生产力为17.179t·hm^-2·yr^-1;常绿阔叶林生物量为357.976t·hm^-2,净第一性生产力为18.730t·hm^-2·yr^-1,可见黑石顶自然保护区南亚热带3种森林群落的发展阶段已比较接近,即针叶林、针阔混交林较为成熟,常绿阔叶林相对年轻,在不受或低度外界干扰的情况下,随着森林群落的正向演替,其生物量和净第一性生产力均呈增加趋势。  相似文献   

5.
西双版纳原始热带湿性季节雨林生物量及净初级生产   总被引:25,自引:5,他引:20       下载免费PDF全文
应用生物量回归模型和生产力方程,研究了西双版纳原始热带湿性季节雨林生物量及净初级生产量(NPP)。雨林总生物量为692.590t·hm-2,总生物量分配为:乔木层占98.66%、灌木层占0.76%、木质藤本层占0.50%、草本层占0.09%,生物量主要集中于乔木层。雨林年平均NPP为25.764t·hm-2·a-1,其中各层次的NPP分别为(t·hm-2·a-1):乔木层23.972(占总NPP的93.04%)、灌木层0.749(占2.91%)、木质藤本层0.431(占1.67%)和草本层0.612(占2.38%)。乔木层NPP分配为(t·hm-2·a-1):凋落量11.566、叶虫食量0.694和生物量增量11.712。结果表明:西双版纳虽地处热带北缘,当地原始热带湿性季节雨林同样具有典型热带雨林一样高的生物量和NPP。  相似文献   

6.
马尾松-阔叶树混交异龄林生物量与生产力分配格局   总被引:15,自引:1,他引:14  
在25年生的马尾松林下分别套种1年生火力楠、闽粤栲、苦槠、格氏栲、青栲和拉氏栲幼苗,经过16a的培育后形成了郁闭的针阔混交异龄林。应用分层平均标准木收获法,建立相对生长方程,对上述6种混交林及马尾松纯林的生物量与生产力分配格局进行了研究。6个混交林的林木总生物量分别为216·41、260·06、221·92、221·65、246·13t/hm2及201·04t/hm2,而马尾松纯林的生物量为204·37t/hm2;其中地上部分占81·4%~83·7%,林分之间差异较小。在混交林中,处于主林层的马尾松生物量占林分总生物量的比例为73·5%~85·4%。在各林分生物量组成中,干材生物量最大,占总生物量的56·4%~64·8%,其它组分所占的比例依次为根(16·3%~18·6%)>枝(9·0%~16·9%)>皮(4·9%~7·3%)>叶(1·1%~4·3%)。生物量的空间结构在马尾松纯林和混交林之间存在明显差异,混交林中0~9m高度的生物量分配比例(67·1%)明显大于马尾松纯林(53·7%);混交林中,在2~3m高度就出现了枝、叶的分布,而马尾松纯林中则出现在13~14m。混交林中,阔叶树根系的生物量主要集中于0~40cm土层,占根系总生物量的74%~99%,60cm以下土层则根系分布很少,而马尾松的根系则主要分布于土壤表层(0~20cm)和60cm以下土层,分别占总生物量的26%和49%。各混交林分的净初级生产力为10·60~15·25t/(hm2·a),而马尾松纯林的生产力仅7·34t/(hm2·a)。林分净初级生产力(NPP)与光合器官/地上部分生物量比(X1)、细根生物量/地下部分生物量比(X2)存在显著的非线形关系:NPP=5·5745+1·1985X1+2·6479X22。在所研究的林分中,细根(d<2mm)生物量占林分总生物量的平均比例为0·2%,但细根生产力占林分净生产力的平均比达2·9%。  相似文献   

7.
 线叶菊草地总地上生物量的增长规律符合Logistic增长,最大值出现在8月中旬,为198.15g/m2。返青后,线叶菊较同群落内的禾草和杂类草提前达到其生物量最大值。线叶菊、禾草和杂类草的地上生物量的增长与降水量和≥5℃积温呈显著或极显著正相关。地下生物量的季节变化曲线大致为“U”字形,最低值出现在8月中旬,而在早春和秋末时期地下生物量基本相等。地下生物量最大值出现在10月中旬,为1608.5g/m2(干物质)。该草地地上部分净第一性生产力为256.74gm2·a,地下部分为599.51g/m2·a(干物重计)。将生长季内以凋落物形式损失的生物量计算在内,得到的地上净第一性生产力比用极大现存量法估测的结果高出29.57%。  相似文献   

8.
本文研究了黑石顶自然保护区南亚热带常绿阔叶林的生物量增量及其分配规律,净第一性生产量及其分配规律,生物量增量为10.680hm^-2.a^-1,其中干6.127(57./37%),枝2.195(20.55%),叶0.514(4.81%),根1.844(17.27%),乔木层8.8786(82.27%),灌木层1.679(15.72%),草本层0.215(2.01%),生物量增量的垂直分布以20-25米的林冠层比较最高,其次是10-15米的乔木层第二亚层。生物量增量的径级分布近于正态分布。净第一性生产量为29.612t.hm^-2.a^-1,其中干8.181(27.63%),枝3.403(11.49%),叶4.281(14.46%),根13.165(44.46%),花果0.582(1.97%),细根(D≤3mm),生产量占根系生产量的81%;根系生产量约占净第一性生产量的45%,传统假定的根系生产量占森林生产量的15-25%,可能是太低的估计,森林的生产效率为1.897t.t^-1叶或1.733tt.hm^-2叶各器官的生产效率有如下顺序,细根>叶>根(包括细根)>枝>干,EVI法用于该森林树干生物量增量的估计,得到较低的值(约低27%)。  相似文献   

9.
湖南会同红栲-青冈-刨花楠群落生物生产力的研究   总被引:4,自引:2,他引:2  
用回归分析方法 ,对我国亚热带湖南会同红栲 青冈 刨花楠群落的生物生产力进行了研究 ,结果表明 ,林分总生物量为 45 1.0 2t·hm-2 ,其中乔木层、灌木层和藤本生物量分别为 42 6 .76、17.76和 1.80t·hm-2 ,枯枝落叶层现存量为 4.70t·hm-2 ,乔木层净生产量和平均生产量分别为 34.46t·hm-2 ·年 -1、13 .32t·hm-2 ·年 -1.  相似文献   

10.
放牧对草原生态系统地下生产力及生物量的影响   总被引:23,自引:3,他引:20  
放牧作为一种人类活动的干扰因子,主要通过动物的采食、践踏及其排泄物的输入对草原生态系统产生影响,这些影响直接作用于草原生态系统的地上部分和土壤,从而影响草原生态系统的物质生产和分配,进而影响到地下生产力和生物量.以蒙古克氏针茅 Stipakrylovii -冷蒿 Artemisiafrigida 草原为研究对象,对自由放牧区和围栏禁牧封育区草原生态系统地下生产力、生物量进行了比较研究.结果表明:自由放牧区草原生态系统地下生产力为147.6g·m-2·y-1,围栏禁牧封育区地下生产力达187.3g·m-2·y-1,二者地下生产力差异显著 α=0.05 ,说明封育保护可以提高过牧草原生态系统的地下生产力.地下生物量在自由放牧区为2032.6g·m-2,其中活地下生物量占54.9%,死地下生物量占45.1%;在围栏禁牧封育区平均为2071.8g·m-2,其中活地下生物量占56.4%,死地下生物量占43.6%,两者没有明显差异.地下生物量在土壤中垂直分布规律在两个试验区均表现为自地表向下呈指数函数减小,主要集中分布在0~30cm的土层.  相似文献   

11.
千烟洲人工林主要树种地上生物量的估算   总被引:30,自引:2,他引:28  
利用不同参数和函数,模拟了千烟洲人工林主要树种马尾松、湿地松和杉木的枝条、叶生物量和总生物量及单株各器官生物量,选择最佳函数计算生物量在各树种不同器官中的分配,估算不同林型的地上生物量.结果表明,不同树种的枝条基径(d)和枝条生物量(BW)、叶生物量(LW)之间,当d3为自变量时,相关系数最高,湿地松利用线性函数、马尾松和杉木利用幂函数模拟效果最佳;单木总生物量以利用D2H(胸径2×树高)为自变量的幂函数模拟相关系数最高;3个树种叶和枝生物量各有不同的最佳自变量和函数类型,但同一树种的叶、枝生物量最佳拟合方程的自变量和函数类型一致.马尾松林、湿地松林和杉木林的地上生物量分别为83.6、72.1和59 t·hm-2,其中树干生物量所占比重最大,叶生物量最小.根据前人的研究结果推算3种林分地下生物量分别为10.44、9.42和11.48 t·hm-2,其固碳量分别为47.94、45.14和37.52 t·hm-2.  相似文献   

12.
长白山高山冻原生态系统磷硫生物循环的研究   总被引:1,自引:0,他引:1  
利用分室模型对长白山高山冻原生态系统磷硫生物循环进行了研究.结果表明,长白山高山冻原植被-土壤系统中总磷和总硫净储存分别为16 088.6 t和26 079.4 t,其中土壤库分别占99.2%和99.5%.磷硫在土壤库、凋落物库和植被库的分布极不平衡,储量分别是:植被库中磷46.14 t、硫64.82 t,其中地上部分储存磷21.88 t、硫44.21 t,地下根系储存磷24.28 t、硫20.61 t,在植物亚系统中47.4%的磷和68.2%的硫储存在地上部分;凋落物库中磷89.63 t、硫53.16 t;土壤库中磷15 952.8 t、硫26 014.6t.长白山高山冻原植被-土壤系统中,磷年吸收量和年凋落物归还量分别为24.52和31.59 t;硫在地上植物活体、地下根系中年转移量和年凋落物归还量分别为31.18、10.12和21.06 t,硫自然归还率为67.5%.  相似文献   

13.
祁连山青海云杉林生物量和碳储量空间分布特征   总被引:7,自引:0,他引:7  
根据野外调查资料、祁连山地区青海云杉林相图和气象资料,在GIS技术的支持下估算了祁连山地区青海云杉林的生物量和碳储量及其空间分布.结果表明:2008年,研究区青海云杉林平均生物量为209.24 t·hm-2,总生物量为3.4×107 t;研究区水热条件的差异使青海云杉生物量在地理空间上存在较大的差异性;经度每增加1°,青海云杉生物量增加3.12t·hm-2;纬度每增加1°,生物量减少3.8 t·hm-2;海拔每升高100 m,生物量减少0.05 t·hm-2;2008年,研究区青海云杉林碳密度在70.4~131.1 t·hm-2,平均碳密度为109.8 t·hm-2,幼龄林、中龄林、近熟林、成熟林和过熟林的平均碳密度分别为83.8、109.6、122、124.2和117.1 t·hm-2,研究区青海云杉林总碳储量为1.8×107 t.  相似文献   

14.
青藏高原有各类天然草地14×108hm2,其中高寒草甸和高寒灌丛约占青藏高原天然草地面积的50%,占全国草地总面积的16.2%。嵩草草甸是高寒草甸的主体,包括矮嵩草草甸、金露梅灌丛草甸、藏嵩草草甸、小嵩草草甸和高山嵩草草甸等,这5类高寒草甸平均地上生物量分别为354.2、422.4、445.1、227.3和368.5g/m2,地下生物量分别为3389.6、3548.3、11922.7、4439.3、5604.8g/m2,地下与地上生物量的比例分别为10.55、10.15、27.82、14.82和15.21,远大于IPCC(2006)报告中地下/地上生物量比例的默认值(2.8±95%)。地下生物量对气候变化和放牧的反应比地上生物量更敏感,干旱和重度放牧均降低了地下/地上生物量的比例。在极度退化状态下地下/地上生物量的比例2。对于轻度和中度退化的高寒草甸应以围封禁牧为主要恢复措施,但如果结合补播和施肥,则恢复速率会加快;对于重度和极度退化的高寒草甸,由于草地植物群落中优良牧草的比例极低,仅靠自然恢复很难进行恢复或需要的年限很长,所以必须采用人工重建的措施,并结合毒杂草防除和施肥等措施进行恢复,通过建立人工或半人工草地的措施予以重建。  相似文献   

15.
Ni  Jian 《Plant Ecology》2004,174(2):217-234
Data on field biomass measurements in temperate grasslands of northern China (141 samples from 74 sites) were obtained from 23 Chinese journals, reports and books. Net primary productivity (NPP) of grasslands was estimated using three algorithms (peak live biomass, peak standing crop and maximum minus minimum live biomass), respectively, based on availability of biomass data in sites. 135 samples which have aboveground biomass (AGB) measurements, have peak AGB ranges from 20 to 2021 g m–2 (mean = 325.3) and the aboveground NPP (ANPP) ranges from 15 to 1647.1 g m–2 per year (mean = 295.7). 72 samples which have belowground biomass (BGB) measurements, have peak BGB ranges from 226.5 to 12827.5 g m–2 (mean = 3116) and the belowground NPP (BNPP) ranges from 15.8 to 12827.5 g m–2 per year (mean = 2425.6). In total 66 samples have the total NPP (TNPP), ranging from 55.3 to 13347.8 g m–2 per year (mean = 2980.3). Mean peak biomass and NPP varied from different geographical sampling locations, but they had a general rough regularity in ten grasslands. Meadow, mountain and alpine grasslands had high biomass and NPP (sometimes including saline grassland). Forested steppe, saline grassland and desert had median values. Meadowed and typical steppes had low biomass and NPP (sometimes including desert). The lowest biomass and NPP occurred in deserted steppe and stepped desert. Grassland ANPP has significant positive relationships with annual and summer precipitation as well as summer temperature (all p<0.01). However, grassland BNPP and TNPP have more significant negative relationships with summer temperature (p<0.01) than with annual temperature (p<0.05). The analysis of climate – productivity correlations implied that aboveground productivity is more controlled by rainfall, whereas belowground and total productivity is more influenced by temperature in the temperate grasslands of northern China. The present study might underestimate grassland NPP in northern China due to limitation of biomass measurements. Data on relative long-term aboveground and belowground biomass dynamics, as well as data of standing dead matter, litterfall, decomposition and turnover, are required if grassland NPP is to be more accurately estimated and the role of temperate grasslands in the regional to global carbon cycles is to be fully appreciated. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
辽东山区人工阔叶红松林植物多样性与生产力研究   总被引:14,自引:0,他引:14  
根据对人工营造20年生阔叶红松林典型样地的调查,分析了人工阔叶红松林的生产力、植物多样性及其相互关系.结果表明,人工营造的20年生红松-白桦、红松-色赤杨、红松-水曲柳混交林林地生产力分别达.529、4.9和5.82 t·hm-2·yr-1,高于同龄人工红松纯林(3.812 t·hm-2·yr-1);而红松-刺楸、红松-紫椴混交林分别为2.945和2.84 t·hm-2·yr-1,低于人工红松纯林.人工阔叶红松林乔木层、灌木层、草本层植物多样性均高于红松纯林;红松纯林内的植物种数仅为人工阔叶红松混交林的42%~52%,植物总数量也只有混交林的11%~37%.人工营造阔叶红松林是迅速恢复、发展顶极阔叶红松林的一种有效措施,但要经历相当长的时间和人为的不断调控.  相似文献   

17.
香港桃金娘灌木群落植物生物量 和净第一性生产量   总被引:2,自引:0,他引:2       下载免费PDF全文
本文研究香港桃金娘灌木林植物生物量和净第一性生产量。结果表明(1)桃金娘茎的直径与高度与各组分的生物量有明显的相关关系。(2)桃金娘叶子占地上部活植物生物量的20.2%,花和果如果以它的峰值计算,其占地上部活植物生物量的9.6%,茎和枝占70.4%。(3)地上部和地下部活植物生物量分别为1553g*m  相似文献   

18.
To address the need for a high quality data set based upon field observations suitable for parameterization, calibration, and validation of terrestrial biosphere models, we have developed a comprehensive global database on net primary productivity (NPP). We have compiled field measurements of biomass and associated environmental data for multiple study sites in major grassland types worldwide. Where sufficient data were available, we compared aboveground and total NPP estimated by six computational methods (algorithms) for 31 grassland sites. As has been found previously, NPP estimates were 2–5 times higher using methods which accounted for the dynamics of dead matter, compared with what is still the most commonly applied estimate of NPP (maximum peak live biomass). It is suggested that assumptions such as the use of peak biomass as an indicator of NPP in grasslands may apply only within certain subbiomes, e.g. temperate steppe grasslands. Additional data on belowground dynamics, or other reliable estimates of belowground productivity, are required if grasslands are to be fully appreciated for their role in the global carbon cycle.  相似文献   

19.
贵州省森林生物量及其空间格局   总被引:4,自引:0,他引:4  
Tian XL  Xia J  Xia HB  Ni J 《应用生态学报》2011,22(2):287-294
利用1996—2000年贵州省森林资源连续清查5500个样地的资料,依据主要森林类型蓄积量-生物量的转换函数估算贵州省各种林地的生物量,分析其空间分布格局,以及喀斯特和非喀斯特地貌上森林生物量的差异.结果表明:贵州省林地和非林地乔灌木的总生物量为3.51×108 t,其中非喀斯特林木占82%,喀斯特林木占18%.不同林地类型的生物量存在差异,林分生物量最高,占总林地生物量的71.4%.喀斯特林地总生物量明显低于非喀斯特林地.不同优势种(组)中,杉木林总生物量最高,达5.38×107 t,硬阔类为4.99×107 t,马尾松、云南松及栎类在2.87×107~3.54×107 t,柏木和软阔叶类分别为1.52×107 t和1.43×107 t,其他优势种(组)均低于1.0×107 t.行政区划上,黔东南州的林地总生物量(9.83×107 t)和林分生物量(5.88×107 t)为遵义、铜仁和黔南地区的2~3倍,且远高于黔西南、毕节、贵阳、安顺和六盘水地区(总生物量为0.53×107~1.85×107 t,林分生物量为0.16×107~0.86×107t).高生物量(>400 t·hm-2)和中高生物量密度(100...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号