首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A set of 5,6-fused bicyclic heteroaromatic scaffolds were investigated for their in vitro anti-tubercular activity versus replicating and non-replicating strains of Mycobacterium tuberculosis (Mtb) in an attempt to find an alternative scaffold to the imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrimidines that were previously shown to have potent activity against replicating and drug resistant Mtb. The five new bicyclic heteroaromatic scaffolds explored in this study include a 2,6-dimethylimidazo[1,2-b]pyridazine-3-carboxamide (7), a 2,6-dimethyl-1H-indole-3-carboxamide (8), a 6-methyl-1H-indazole-3-carboxamide (9), a 7-methyl-[1,2,4]triazolo[4,3-a]pyridine-3-carboxamide (10), and a 5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-carboxamide (11). Additionally, imidazo[1,2-a]pyridines isomers (2 and 12) and a homologous imidazo[1,2-a]pyrimidine isomer (6) were prepared and compared. Compounds 2 and 6 were found to be the most potent against H37Rv Mtb (MIC’s of 0.1 μM and 1.3 μM) and were inactive (MIC >128 μM) against Staphylococcus aureus, Escherichia coli and Candida albicans. Against other non-tubercular mycobacteria strains, compounds 2 and 6 had activity against Mycobacterium avium (16 and 122 μM, respectively), Mycobacterium kansasii (4 and 19 μM, respectively), Mycobacterium bovis BCG (1 and 8 μM, respectively) while all the other scaffolds were inactive (>128 μM).  相似文献   

2.
The present report describes the synthesis and antiproliferative evaluation of certain indolo[3,2-c]quinoline derivatives. For the C6 anilino-substituted derivatives, (11H-indolo[3,2-c]quinolin-6-yl)phenylamine (6a) was inactive. Structural optimization of 6a by the introduction of a hydroxyl group at the anilino-moiety resulted in the enhancement of antiproliferative activity in which the activity decreased in an order of para-OH, 7a > meta-OH, 8a > ortho-OH, 9a. For the C6 alkylamino-substituted derivatives, 11a, 12a, 13a, 14a, and 15a exhibited comparable antiproliferative activities against all cancer cells tested and the skin Detroit 551 normal fibroblast cells. Three cancer cells, HeLa, A549, and SKHep, are very susceptible with IC50 of less than 2.17 μM while PC-3 is relatively resistant to this group of indolo[3,2-c]quinolines. For the 2-phenylethylamino derivatives, compound 20a is active against the growth of HeLa with an IC50 of 0.52 μM, but is less effective against the growth of Detroit 551 with an IC50 of 19.32 μM. For the bis-indolo[3,2-c]quinolines, N,N-bis-[3-(11H-indolo[3,2-c]quinolin-6-yl)aminopropyl]amine hydrochloride (25) is more active than its N-methyl derivative 26 and the positive Doxorubicin. Mechanism studies indicated 25 can induce caspase-3 activation, γ-H2AX phosphorylation, cleavage of poly(ADP-ribose)polymerase and DNA fragmentation. These results provide evidence that DNA, topo I, and topo II are the primary targets of indolo[3,2-c]quinoline derivatives and that consequently inhibits proliferation and causes apoptosis in cancer cells.  相似文献   

3.
A new series of 5-(1-aryl-3-methyl-1H-pyrazol-4-yl)-1H-tetrazole derivatives (4am) and their precursor 1-aryl-3-methyl-1H-pyrazole-4-carbonitriles (3am) were synthesized and evaluated as antileishmanials against Leishmania braziliensis and Leishmania amazonensis promastigotes in vitro. In parallel, the cytotoxicity of these compounds was evaluated on the RAW 264.7 cell line. The results showed that among the assayed compounds the substituted 3-chlorophenyl (4a) (IC50/24 h = 15 ± 0.14 μM) and 3,4-dichlorophenyl tetrazoles (4d) (IC50/24 h = 26 ± 0.09 μM) were the most potent against L. braziliensis promastigotes, as compared the reference drug pentamidine, which presented IC50 = 13 ± 0.04 μM. In addition, 4a and 4d derivatives were less cytotoxic than pentamidine. However, these tetrazole derivatives (4) and pyrazole-4-carbonitriles precursors (3) differ against each of the tested species and were more effective against L.braziliensis than on L. amazonensis.  相似文献   

4.
Twenty six 2,6-disubstituted 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide derivatives were designed by molecular hybridization approach using and synthesized from piperidin-4-one by five step synthesis. Compounds were evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 6-(4-nitrophenylsulfonyl)-2-(5-nitrothiophene-2-carboxamido)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (11) was found to be the most active compound with IC50 of 5.87 ± 0.12 μM against MTB PS, inhibited MTB with MIC of 9.28 μM and it was non-cytotoxic at 50 μM. The binding affinity of the most potent inhibitor 11 was further confirmed biophysically through differential scanning fluorimetry.  相似文献   

5.
In continuation of our previous efforts directed towards the development of potent and selective inhibitors of aldose reductase (ALR2), and to control the diabetes mellitus (DM), a chronic metabolic disease, we synthesized novel coumarin-thiazole 6(a–o) and coumarin-oxadiazole 11(a–h) hybrids and screened for their inhibitory activity against aldose reductase (ALR2), for the selectivity against aldehyde reductase (ALR1). Compounds were also screened against ALR1. Among the newly designed compounds, 6c, 11d, and 11g were selective inhibitors of ALR2. Whereas, (E)-3-(2-(2-(2-bromobenzylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one 6c yielded the lowest IC50 value of 0.16 ± 0.06 μM for ALR2. Moreover, compounds (E)-3-(2-(2-benzylidenehydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6a; IC50 = 2.94 ± 1.23 μM for ARL1 and 0.12 ± 0.05 μM for ARL2) and (E)-3-(2-(2-(1-(4-bromophenyl)ethylidene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6e; IC50 = 1.71 ± 0.01 μM for ARL1 and 0.11 ± 0.001 μM for ARL2) were confirmed as dual inhibitors. Furthermore, compounds 6i, 6k, 6m, and 11b were found to be selective inhibitors for ALR1, among which (E)-3-(2-(2-((2-amino-4-chlorophenyl)(phenyl)methylene)hydrazinyl)thiazol-4-yl)-2H-chromen-2-one (6m) was most potent (IC50 = 0.459 ± 0.001 μM). Docking studies performed using X-ray structures of ALR1 and ALR2 with the given synthesized inhibitors showed that coumarinyl thiazole series lacks the carboxylate function that could interact with the anionic binding site being a common ALR1/ALR2 inhibitors trait. Molecular docking study with dual inhibitor 6e also suggested plausible binding modes for the ALR1 and ALR2 enzymes. Hence, the results of this study revealed that coumarinyl thiazole and oxadiazole derivatives could act as potential ALR1/ALR2 inhibitors.  相似文献   

6.
Four series of phenylpyrimidine-carboxamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (14ae, 15ag, 16ae and 17ag) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7). Four selected compounds (15e, 16ab and 17a) were further evaluated for the activity against c-Met kinase, HepG2 and Hela cell lines. Most of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Eleven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15e showed superior activity to Foretinib against A549, PC-3 and MCF-7 cell lines, with the IC50 values of 0.14 ± 0.08 μM, 0.24 ± 0.07 μM and 0.02 ± 0.01 μM, which were 4.6, 1.6 and 473.5 times more active than Foretinib (0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the replacement of phenylpicolinamide scaffold with phenylpyrimidine fragment of the target compounds was benefit for the activity. What’s more, the introduction of fluoro atom to the aminophenoxy part played no significant impact on the activity and any substituent group on aryl group is unfavourable for the activity.  相似文献   

7.
A series of 1-substituted-N-(4,5-dihydro-1-methyl-[1,2,4]triazolo[4,3-a]quinolin-7-yl) piperidine-4-carboxamides has been synthesized and evaluated for positive inotropic activity by measuring left atrium stroke volume in isolated rabbit-heart preparations. Some of these derivatives exhibited favorable activity compared with the standard drug, milrinone, among which 1-(2-fluorobenzyl)-N-(4,5-dihydro-1-methyl-[1,2,4]triazolo[4,3-a]quinolin-7-yl)piperidine-4-carboxamide 6a was the most potent, increasing stroke volume by 11.92 ± 0.35% (milrinone: 6.36 ± 0.13%) at 1 × 10?4 M.  相似文献   

8.
Alkaline phosphatase (AP) and ecto-5′-nucleotidase (e5′NT) belong to same family that hydrolyze the extracellular nucleotides and ensure the bioavailability of nucleotides and nucleosides at purinergic receptors. During pathophysiological conditions, the over expression of AP and e5′NT lead to an increased production of adenosine that enhance tumor proliferation, invasiveness, neoangiogenesis and disrupts the body antitumor response. As both enzymes are abundantly expressed in above mentioned conditions, therefore it is of great interest to synthesize and develop potent inhibitors of these enzymes that augment the antitumor therapy. Herein we reported the synthesis and biological activity of a new series of chalcone-sulfonamide hybrids (4a-j). These derivatives were then evaluated for their inhibitory potential against two members of ecto-nucleotidase family, e5′NT (human and rat) and APs isozyme (intestinal and tissue nonspecific). Only six derivatives were found to inhibit both human and rat e5′NT enzymes. Compounds 4e and 4d showed maximum inhibition of human and rat e5′NT with an IC50 ± SEM = 0.26 ± 0.01 and 0.33 ± 0.004 μM, respectively. Moreover, on APs, these derivatives were identified as the selective inhibitors of calf intestinal AP (c-IAP). The derivative 4a exhibited maximum inhibition of c-IAP with an IC50 ± SEM = 0.12 ± 0.02 μM. In conclusion, these chalcone-sulfonamide hybrids exhibited dual inhibition of both family of isozymes but was more selective towards c-IAP enzyme.  相似文献   

9.
Chemical investigation of the roots and fruits of Zanthoxylum leprieurii Guill. et Perr. led to the isolation of three new alkaloids including two acridone derivatives, 3-hydroxy-1,4-dimethoxy-10-methyl-9-acridone (2) and 3-hydroxy-1,2-dimethoxy-10-methyl-9-acridone (3) named helebelicine A and B, respectively, and one secobenzo[c]phenantridine, 10-O-demethyl-12-O-methylarnottianamide (10), together with thirteen other compounds. The structures of compounds 2, 3 and 10 as well as those of the known compounds were elucidated by using spectroscopic methods and by comparison with reported data. The brine-shrimp (artemia salina) lethality bioassay of the chloroform extract of the fruits showed modest cytotoxicity with LD50 at 13.1 μg/mL. Isolated compounds 1, 46 were found to be moderately active against lung carcinoma cells (A549), colorectal adenocarcinoma cells (DLD-1) and normal cells (WS1) with IC50 values ranging from 27 to 77 μM. In contrast to the positive control etoposide used, the cytotoxicity of the most active compound 4 was found to be selective against cancer cells in comparison to normal cells WS1 with IC50 of 51 ± 8 μM and 4.3 ± 0.4 μM, respectively.  相似文献   

10.
Four series of phenylpicolinamide derivatives bearing 1H-pyrrolo[2,3-b]pyridine moiety (12ae, 13af, 14af and 15ai) were designed, synthesized and evaluated for the IC50 values against three cancer cell lines (A549, PC-3 and MCF-7) and c-Met kinase. Five selected compounds (13b, 15b, 15d, 15e and 15f) were further evaluated for the activity against HepG2 and Hela cell lines. Eighteen of the compounds showed excellent cytotoxicity activity and selectivity with the IC50 valuables in single-digit μM to nanomole range. Seven of them are equal to more active than positive control Foretinib against one or more cell lines. The most promising compound 15f showed superior activity to Foretinib, with the IC50 values of 1.04 ± 0.11 μM, 0.02 ± 0.01 μM and 9.11 ± 0.55 μM against A549, PC-3 and MCF-7 cell lines, which were 0.62 to 19.5 times more active than Foretinib (IC50 values: 0.64 ± 0.26 μM, 0.39 ± 0.11 μM, 9.47 ± 0.22 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that replacement of quinoline nucleus of the previous active compounds with 1H-pyrrolo[2,3-b]pyridine moiety maintained even improved the potent cytotoxic activity. The results suggested that the introduction of fluoro atoms to the aminophenoxy part of target compounds or the phenyl group of pyrimidine substituted on C-4 position was benefit for the activity.  相似文献   

11.
Three new acridine–thiazolidinone derivatives (2a2c) have been synthesized and their interactions with calf thymus DNA and a number of cell lines (leukemic cells HL-60 and L1210 and human epithelial ovarian cancer cell lines A2780) were studied. The compounds 2a2c possessed high affinity to calf thymus DNA and their binding constants determined by spectrofluorimetry were in the range of 1.37 × 106–5.89 × 106 M?1. All of the tested derivatives displayed strong cytotoxic activity in vitro, the highest activity in cytotoxic tests was found for 2c with IC50 = 1.3 ± 0.2 μM (HL-60), 3.1 ± 0.4 μM (L1210), and 7.7 ± 0.5 μM (A2780) after 72 h incubation. The cancer cells accumulated acridine derivatives very fast and the changes of the glutathione level were confirmed. The compounds inhibited proliferation of the cells and induced an arrest of the cell cycle and cell death. Their influence upon cells was associated with their reactivity towards thiols and DNA binding activity.  相似文献   

12.
In an effort to identify novel cholinesterase candidates for the treatment of Alzheimer’s disease (AD), a diverse array of potentially bioactive compounds including triazolothiadiazoles (4ah and 5af) and triazolothiadiazines (6ah) was obtained in good yields through the cyclocondensation reaction of 4-amino-5-(pyridin-3-yl)-4H-1,2,4-triazole-3-thiol (3) with various substituted aryl/heteroaryl/aryloxy acids and phenacyl bromides, respectively. The structures of newly prepared compounds were confirmed by IR, 1H and 13C NMR spectroscopy and, in case of 4a, by single crystal X-ray diffraction analysis. The purity of the synthesized compounds was ascertained by elemental analysis. The newly synthesized conjugated heterocycles were screened for cholinesterase inhibitory activity against electric eel acetylcholinesterase (EeAChE) and horse serum butyrylcholinesterase (hBChE). Among the evaluated hybrids, several compounds were identified as potent inhibitors. Compounds 5b and 5d were most active with an IC50 value of 3.09 ± 0.154 and 11.3 ± 0.267 μM, respectively, against acetylcholinesterase, whereas 5b, 6a and 6g were most potent against butyrylcholinesterase, with an IC50 of 0.585 ± 0.154, 0.781 ± 0.213, and 1.09 ± 0.156 μM, respectively, compared to neostigmine and donepezil as standard drugs. The synthesized heteroaromatic compounds were also tested for their cytotoxic potential against lung carcinoma (H157) and vero cell lines. Among them, compound 6h exhibited highest antiproliferative activity against H157 cell lines, with IC50 value of 0.96 ± 0.43 μM at 1 mM concentration as compared to vincristine (IC50 = 1.03 ± 0.04 μM), standard drug used in this study.  相似文献   

13.
This paper presents the efficient high yield synthesis of novel pyridine 2,4,6-tricarbohydrazide derivatives (4a4i) along with their α-glucosidase, acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibition activities. The enzymes inhibition results showed the potential of synthesized compounds in controlling both type-II diabetes mellitus and Alzheimer’s disease. In vitro biological investigations revealed that most of compounds were more active against yeast α-glucosidase than the reference compound acarbose (IC50 38.25 ± 0.12 μM). Among the tested series the compound 4c bearing 4-flouro benzyl group was noted to be the most active (IC50 25.6 ± 0.2 μM) against α-glucosidase, and it displayed weak inhibition activities against AChE and BChE. Compound 4a exhibited the most desired results against all three enzymes, as it was significantly active against all the three enzymes; α-glucosidase (IC50 32.2 ± 0.3 μM), AChE (IC50 50.2 ± 0.8 μM) and BChE (IC50 43.8 ± 0.8 μM). Due to the most favorable activity of 4a against the tested enzymes, for molecular modeling studies this compound was selected to investigate its pattern of interaction with α-glucosidase and AChE targets.  相似文献   

14.
New oxazolinyl derivatives of [17(20)E]-pregna-5,17(20)-diene: 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,5′-dihydro-1′,3′-oxazole 1 and 2′-{[(E)-3β-hydroxyandrost-5-en-17-ylidene]methyl}-4′,4′-dimethyl-4′,5′-dihydro-1′,3′-oxazole 2 were evaluated as potential CYP17A1 inhibitors in comparison with 17-(pyridin-3-yl)androsta-5,16-dien-3β-ol 3 (abiraterone). Differential absorption spectra of human recombinant CYP17A1 in the presence of compound 1 (λmax = 422 nm, λmin = 386 nm) and compound 2 (λmax = 416 nm) indicated significant differences in enzyme/inhibitors complexes. CYP17A1 activity was measured using electrochemical methods. Inhibitory activity of compound 1 was comparable with abiraterone 3 (IC50 = 0.9 ± 0.1 μM, and IC50 = 1.3 ± 0.1 μM, for compounds 1 and 3, respectively), while compound 2 was found to be weaker inhibitor (IC50 = 13 ± 1 μM). Docking of aforementioned compounds to CYP17A1 revealed that steroid fragments of compound 1 and abiraterone 3 occupied close positions; oxazoline cycle of compound 1 was coordinated with heme iron similarly to pyridine cycle of abiraterone 3. Configuration of substituents at 17(20) double bond in preferred docked position corresponded to Z-isomers of compounds 1 and 2. Presence of 4′-substituents in oxazoline ring of compound 2 prevents coordination of oxazoline nitrogen with heme iron and worsens its docking score in comparison with compound 1. These data indicate that oxazolinyl derivative of [17(20)E]-pregna-5,17(20)-diene 1 (rather than 4′,4′-dimethyl derivative 2) may be considered as potential CYP17A1 inhibitor and template for development of new compounds affecting growth and proliferation of prostate cancer cells.  相似文献   

15.
A series of 7,8-dihydro-5H-thiopyrano[4,3-d]pyrimidine derivatives (7aq, 10aq) were designed, synthesized and their chemical structures were confirmed by 1H NMR, 13C NMR, MS and HRMS spectrum. All the compounds were evaluated for the inhibitory activity against mTOR kinase at 10 μM level. Five selected compounds (7b, 7e, 7h, 10b and 10e) were further evaluated for the inhibitory activity against PI3Kα at 10 μM level, and the IC50 values against mTOR kinase and two cancer cell lines. Twelve of the target compounds exhibited moderate antitumor activities. The most promising compound 7e showed strong antitumor activities against mTOR kinase, H460 and PC-3 cell lines with IC50 values of 0.80 ± 0.15 μM, 7.43 ± 1.45 μM and 11.90 ± 0.94 μM, which were 1.28 to 1.71-fold more active than BMCL-200908069-1 (1.37 ± 0.07 μM, 9.52 ± 0.29 μM, 16.27 ± 0.54 μM), respectively. Structure–activity relationships (SARs) and docking studies indicated that the thiopyrano[4,3-d]pyrimidine scaffolds exerted little effect on antitumor activities of target compounds. Substitutions of aryl group at C-4 position had a significant impact on the antitumor activities, and 4-OH substitution produced the best potency.  相似文献   

16.
Twenty derivatives of 5-aryl-2-(6′-nitrobenzofuran-2′-yl)-1,3,4-oxadiazoles (120) were synthesized and evaluated for their α-glucosidase inhibitory activities. Compounds containing hydroxyl and halogens (16, and 818) were found to be five to seventy folds more active with IC50 values in the range of 12.75 ± 0.10–162.05 ± 1.65 μM, in comparison with the standard drug, acarbose (IC50 = 856.45 ± 5.60 μM). Current study explores the α-glucosidase inhibition of a hybrid class of compounds of oxadiazole and benzofurans. These findings may invite researchers to work in the area of treatment of hyperglycemia. Docking studies showed that most compounds are interacting with important amino acids Glu 276, Asp 214 and Phe 177 through hydrogen bonds and arene-arene interaction.  相似文献   

17.
We recently showed that oxadiazoles have anti-Trypanosoma cruzi activity at micromolar concentrations. These compounds are easy to synthesize and show a number of clear and interpretable structure–activity relationships (SAR), features that make them attractive to pursue potency enhancement. We present here the structural design, synthesis, and anti-T. cruzi evaluation of new oxadiazoles denoted 5ah and 6ah. The design of these compounds was based on a previous model of computational docking of oxadiazoles on the T. cruzi protease cruzain. We tested the ability of these compounds to inhibit catalytic activity of cruzain, but we found no correlation between the enzyme inhibition and the antiparasitic activity of the compounds. However, we found reliable SAR data when we tested these compounds against the whole parasite. While none of these oxadiazoles showed toxicity for mammalian cells, oxadiazoles 6c (fluorine), 6d (chlorine), and 6e (bromine) reduced epimastigote proliferation and were cidal for trypomastigotes of T. cruzi Y strain. Oxadiazoles 6c and 6d have IC50 of 9.5 ± 2.8 and 3.5 ± 1.8 μM for trypomastigotes, while Benznidazole, which is the currently used drug for Chagas disease treatment, showed an IC50 of 11.3 ± 2.8 μM. Compounds 6c and 6d impair trypomastigote development and invasion in macrophages, and also induce ultrastructural alterations in trypomastigotes. Finally, compound 6d given orally at 50 mg/kg substantially reduces the parasitemia in T. cruzi-infected BALB/c mice. Our drug design resulted in potency enhancement of oxadiazoles as anti-Chagas disease agents, and culminated with the identification of oxadiazole 6d, a trypanosomicidal compound in an animal model of infection.  相似文献   

18.
Protoporphyrinogen oxidase (PPO, E.C. 1.3.3.4) is the action target for several structurally diverse herbicides. A series of novel 4-(difluoromethyl)-1-(6-halo-2-substituted-benzothiazol-5-yl)-3-methyl-1H-1,2,4-triazol-5(4H)-ones 2az were designed and synthesized via the ring-closure of two ortho-substituents. The in vitro bioassay results indicated that the 26 newly synthesized compounds exhibited good PPO inhibition effects with Ki values ranging from 0.06 to 17.79 μM. Compound 2e, ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzo-thiazol-2-yl]thio}acetate, was the most potent inhibitor with Ki value of 0.06 μM against mtPPO, comparable to (Ki = 0.03 μM) sulfentrazone. Further green house assays showed that compound 2f (Ki = 0.24 μM, mtPPO), ethyl 2-{[5-(4-(difluoromethyl)-3-methyl-5-oxo-4,5-dihydro-1H-1,2,4-triazol-1-yl)-6-fluorobenzothiazol-2-yl]thio}propanoate, showed the most promising post-emergence herbicidal activity with broad spectrum even at concentrations as low as 37.5 g ai/ha. Soybean exhibited tolerance to compound 2f at the dosages of 150 g ai/ha, whereas they are susceptible to sulfentrazone even at 75 g ai/ha. Thus, compound 2f might be a potential candidate as a new herbicide for soybean fields.  相似文献   

19.
Fifteen novel hybrids containing diterpene skeleton and nitric oxide (NO) donor were prepared from isosteviol. All the compounds were tested on preliminary cytotoxicity, and the results showed that six target compounds (8c, 10b, 14a, 14c, 18c, and 18d) exhibited anti-proliferation activity on HepG2 cells, with 8c (IC50 = 4.24 μM) and 18d (IC50 = 2.75 μM) superior to the positive control CDDO-Me (2-cyano-3,12-dioxooleana-1,9(11)-dien-28-acid methyl ester, IC50 = 4.99 μM); eleven target compounds (8ac, 9ac, 10ab, 14a, 14c, 18d) exhibited anti-proliferation activities on B16F10 cells at different levels, among them, seven compounds were more potent than comptothecin (IC50 = 2.78 μM) and CDDO-Me (IC50 = 5.85 μM), particularly, 10b (IC50 = 0.02 μM) presented the strongest effect, which was selected as a candidate for further study.  相似文献   

20.
Three novel compounds; two polymethoxylated flavonoids, 5,7,4′-trihydroxy-3,8,3′,5′-tetramethoxyflavone (1), 5,7,3′-trihydroxy-3,8,4′,5′-trimethoxyflavone (2), and a clerodane diterpenoid; 8-acetoxyisochiliolide lactone (3) were characterized from the leaf exudates of Microglossa pyrifolia. In addition, three known polymethoxylated flavonoids including; 5,7,4′-trihydroxy-3,8,3′-trimethoxyflavone (4), 5,3′4′-trihydroxy-3,7,8-trimethoxyflavone (5), 5,3′4′-trihydroxy-7-methoxyflavanone (6) and a clerodane diterpenoid; 7,8-epoxyisocholiolide lactone (7) were identified. Their structures were determined on the basis of spectroscopic evidence. All the compounds did not exhibit antiplasmodial and antimicrobial activities at 47.6 μg/mL and were not cytotoxic at 5 μg/mL. Compound 6 exhibited modest antileishmanial activity with IC50 value of 13.13 μg/mL with 5 and 7 showing activities with IC50 values of 31.13 and 38.00 μg/mL, respectively, therefore inactive. The flavonoids (quercetin derivatives, 4 and 5) showed similar antioxidant activities, using 2,2-diphenylpicrylhydrazyl (DPPH) assay, with IC50 values of 6.2 ± 0.3 μg/mL for 4 (17.3 μM) and 5 (17.8 μM) respectively. These activities were comparable to that of the standard quercetin (IC50 value of 6.0 ± 0.2 μg/mL (19.9 μM)), irrespective of methylation of the characteristic hydroxyl groups expected to be responsible for activity and additional substitution at C-8 in ring A of the flavonoid ring. These studies revealed that the presence of an hydroxyl group at C-4′ positions and oxygenation at C-3 in flavone skeleton, appears to be necessary for good antioxidant activities as encountered in compounds 1, 4 and 5. Substantial reduction in antioxidant activity was shown by methoxylation of the 4′-OH as observed in compound 2 with an IC50 value of 8.79 ± 0.3 μg/mL (24.4 μM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号