首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
为了进一步探讨耳声发射的产生机制,需要研究不同类型刺激诱发的耳声发射之间的相互关系.主要研究短声与短纯音诱发的耳声发射,用广义时频分析方法中的锥形核分布分别计算了它们的时频分布,从其时频分布分析了它们之间的相互关系.结果表明:具有不同中心频率的短纯音刺激诱发耳声发射的时频分布的迭加与短声刺激诱发的耳声发射的时频分布具有相似性,两者时频分布中的主要频率成分数目、潜伏期和持续时间完全相同,它们高度的相关性支持了短声与短纯音诱发的耳声发射具有共同的产生器的观点.  相似文献   

2.
短纯音诱发耳声发射的指数方法时频分析   总被引:4,自引:2,他引:2  
目的在于使用指数分布方法计算来自于正常人耳短纯音诱发耳声发射(Tone-burstEvokedOtoacousticEmissions,TBOAEs)的时频分布。对耳声发射的定量分析依赖于谱方法,而TBOAEs是非平稳信号,因此传统的谱分析方法已不能满足要求,指数分布能很好地给出TBOAEs的时频表示。我们根据对仿真信号及实测TBOAEs的计算结果,分析了其时频分布的特点,并对不同的频率成份与潜伏期的关系进行了描述。  相似文献   

3.
徐立  吕建忠 《生理学报》1991,43(3):306-310
用不同频率的短纯音骨导刺激,在7名(14耳)听力正常受试者同时记录双耳声诱发耳声发射(EOAE)。此法比单耳轮流记录省时一半。研究结果表明,EOAE 为一种窄带声,其中心频率随刺激声频率增高而增高,提示 EOAE 产生部位在接受刺激声频率对应的耳蜗部位附近。EOAE 的潜伏期与刺激强度无明显关系,但有随刺激声频率增高而变短的趋势,可能与不同频率刺激声诱发的 EOAE 在基底膜上产生的部位与鼓膜之间的距离不等有关。除1耳用4.0kHz 外,用1.0,2.0,3.0和4.0kHz 短纯音刺激在14耳全可记录到 EOAE,0.5kHz和6.0kHz 则分别在10耳和7耳记录到 EOAE。0.5—6.0kHz 短纯音诱发的 EOAE 的阈值均值连线所得的声发射耳蜗图上可见,1.0kHz 处阈值最低,而在这些受试者所测得的中耳共振频率平均值为1100±230Hz,推测1.0kHz EOAE 阈值最低与中耳的传导函数有关。本文描述的骨导双耳同时记录 EOAE 并描记声发射耳蜗图的方法可用于临床的听力客观评价。  相似文献   

4.
为了研究瞬态诱发耳声发射的时频分布, 寻找其时频分布的最佳计算方法, 首先系统地介绍了广义时频分析方法,并描述了其中二次时频表示方法的特点,然后用Wigner 分布及其改进型分布计算了仿真的瞬态诱发耳声发射信号的时频分布,通过对不同分布计算结果的比较,得出了锥形核分布最适合用于描述瞬态诱发耳声发射的时频分布。  相似文献   

5.
为了研究瞬态诱发耳声发射的时频分布,寻找其时频分布的最佳计算方法,首先筚计介绍了广时频分析方法,并描述了其中二次时频表示方法的特特点,然后用Wigner分布及其改进型分布计算了仿真的瞬态诱发耳声发射信号的时频分布,通过对不同分布计算结果的比较,得出了锥形核分布最适合用于描述瞬态诱发耳声发射的时频分布。  相似文献   

6.
耳声发射信号的小波分析及应用   总被引:1,自引:0,他引:1  
为了利用瞬态诱发耳声发射信号,对耳蜗性和蜗后性两种感音神经性耳聋进行诊断和定位,提出了一种基于小波变换的方法,用于对感音神经性耳聋病变进行诊断和定位。首先,获得听力正常耳信号的小波变换的对数均方根-频率曲线范围,及在对侧刺激声作用下,信号受抑制的小波变换的对数均方根-频率曲线范围;然后根据某一受试耳有无对侧刺激声作用下的瞬态诱发耳声发射信号,得出其小波变换的对数均方根曲线及受抑制的对数均方根曲线。最后,检测受试耳的两条曲线是否分别在正常值范围内,由此对受试耳的耳蜗及内侧橄榄耳蜗系统功能进行检测,同时根据每一条曲线将蜗性及蜗后病变定位到某一细致的频带。此方法与目前临床上采用的耳声发射结合ABR和纯音测听的诊断方法能很好地吻合。  相似文献   

7.
目的:通过测试正常听力青年男女的听觉多频稳态诱发反应ASSR和单频刺激声稳态诱发反应探求单频刺激声稳态诱发反应的可靠性。方法:选取32名64耳听力正常的青年人作为受试者,对其进行纯音听阈、ASSR及四个0.5、1、2、4k Hz单频刺激声稳态诱发反应阈值测试,并记录0.5、1、2和4k Hz四个频率纯音阈值及ASSR及四个单频刺激声稳态诱发反应阈值。结果:ASSR在0.5、1、2和4k Hz四个频率的反应阈值与纯音听阈阈值相关性系数分别为0.64、0.81、0.79、0.85;0.5k Hz单频刺激声稳态诱发反应阈值与ASSR阈值具有明显统计学差异,其余3个单频刺激声稳态诱发反应阈值与ASSR阈值没有统计学差异,0.5k Hz单频刺激声稳态诱发反应阈值与纯音听阈阈值相关性系数为0.81。结论:ASSR阈值与纯音听阈具有较好的相关性,0.5k Hz单频刺激声稳态诱发反应可以提高0.5k Hz ASSR阈值与纯音听阈的相关性。  相似文献   

8.
邵殿华  欧钟文 《生理学报》1988,40(4):349-355
重复短声调频在豚鼠诱发的皮层慢反应的基本特征与其他声刺激诱发者相似,它为一正负正三相波,第一正峰的潜伏期约50ms。以调频深度表示的反应阈△f_r较易测定,可以作为动物频率辨别能力的定量表达。对从250至4000pps的复频,豚鼠△fr的均值只在2.0至2.6pps间波动,因此对需要比较不同状况时△fr的变化,一般只取复频1000pps的△f_r便可代表,不必取整个△f_r曲线。听觉系统对重复短声的频率变化比纯音的容易检别,本文对可能的机理进行了讨论。  相似文献   

9.
瞬态诱发耳声发射的能量分布图   总被引:3,自引:0,他引:3  
耳声发射是近年来耳科界研究的热点。文章提出以小波变换提取不同尺度下瞬态诱发耳声发射(TEOAE)的小波信号,并以其平均能量作为特征参数,建立了TEOAE能量分布图,为TEOAE的定量频率分析提供新手段。TEOAE能量分布图以正常人的平均能量作为0dB,以单侧5%位数作为95%正常值范围,它体现了能量的损失情况,便于与纯音测听的结果相比较。TEOAE能量分布图的建立,说明TEOAE信号也包含了定量的频率信息,并提供了其定量分析的有效手段,有较好的临床应用前景  相似文献   

10.
耳声发射的产生是耳蜗非线性动力学机制作用的结果 ,是外毛细胞的非线性生物机构放大过程的一种能量泄露。我们将分形理论用于对耳声发射信号波形形态的研究 ,并通过基于数学形态学的分形维数计算方法对数例瞬态诱发耳声发射信号进行了分析。实验结果表明该信号具有较好的分形特性 ,为耳声发射进一步的深入研究和理解提供了一定的帮助。  相似文献   

11.
Click-evoked otoacoustic emissions (CEOAEs) and distortion-product OAEs (DPOAEs) were measured in about 60 rhesus monkeys. CEOAE strength was substantially greater in females than in males, just as in humans. DPOAE strength was generally slightly stronger in females, just as in humans. In males, CEOAEs were weaker (more masculine) in the fall breeding season and in winter than in the summer. In females, CEOAEs were slightly stronger (more feminine) in the fall, when sex steroids are elevated in females (and males), than in the summer when rhesus monkeys are reproductively quiescent. Thus, the sex differences in CEOAEs were greater in the fall than in the summer. We presume that the seasonal fluctuations in OAEs reflect activational hormonal effects, while the basic sex differences in OAEs likely reflect organizational effects of prenatal androgen exposure. Some monkeys of both sexes had been treated with additional testosterone or the anti-androgen flutamide during prenatal development. In accord with expectations, prenatal androgen treatment weakened CEOAEs in females, and prenatal flutamide treatment strengthened CEOAEs in males. For DPOAEs, the differences between treated and untreated groups were mostly small and often inconsistent. Taken as a whole, the data from both rhesus monkeys and humans suggest that the linear, reflection-based mechanism of OAE production that underlies CEOAEs is more sensitive to prenatal androgenic processes than is the nonlinear distortion mechanism that underlies DPOAEs.  相似文献   

12.
Otoacoustic emissions (OAEs) were measured in male and female Suffolk sheep (Ovis aries). Some sheep had been administered androgens or estrogens during prenatal development, some were gonadectomized after birth, and some were allowed to develop normally. As previously reported for spotted hyenas, gonadectomy did not alter the OAEs for either sex; accordingly, the untreated/intact and the untreated/gonadectomized animals were pooled to form the control groups. The click-evoked otoacoustic emissions (CEOAEs) exhibited by the female control group (N = 12) were slightly stronger (effect size = 0.42) than those in the male control group (N = 15), which is the same direction of effect reported for humans and rhesus monkeys. Females administered testosterone prenatally (N = 16) had substantially weaker (masculinized) CEOAEs than control females (effect size = 1.15). Both of these outcomes are in accord with the idea that prenatal exposure to androgens weakens the cochlear mechanisms that underlie the production of OAEs. The CEOAEs of males administered testosterone prenatally (N = 5) were not different from those of control males, an outcome also seen in similarly treated rhesus monkeys. Males administered dihydrotestosterone (DHT) prenatally (N = 3) had slightly stronger (hypo-masculinized) CEOAEs than control males. No spontaneous otoacoustic emissions (SOAEs) were found in any ears, a common finding in non-human species. To our knowledge, this is the first ruminant species measured for OAEs.  相似文献   

13.
In humans and rhesus monkeys, click-evoked otoacoustic emissions (CEOAEs) are stronger in females than in males, and there is considerable circumstantial evidence that this sex difference is attributable to the greater exposure to androgens prenatally in males. Because female spotted hyenas are highly androgenized beginning early in prenatal development, we expected an absence of sexual dimorphism in the CEOAEs of this species. The CEOAEs obtained from 9 male and 7 female spotted hyenas confirmed that expectation. The implication is that the marked androgenization to which female spotted hyenas are exposed masculinizes the cochlear mechanism responsible for CEOAEs. The CEOAEs measured in 3 male and 3 female hyenas that had been treated with anti-androgenic agents during prenatal development were stronger than the CEOAEs of the untreated animals, in accord with the implied inverse relationship between prenatal androgen exposure and the strength of the cochlear mechanisms producing CEOAEs. The CEOAEs of three ovariectomized females and two castrated males were essentially the same as those for the untreated females and males, suggesting that there is little or no activational effect of hormones on CEOAE strength in spotted hyenas. Distortion product OAEs (DPOAEs) also were measured. Those sex differences also were generally small (as they are in humans), and the effects of the anti-androgen agents were inconsistent. Thus, prenatal androgen exposure apparently does affect OAEs, but the effects appear to be greater for the reflection-based cochlear mechanism that underlies CEOAEs than for the nonlinear cochlear mechanism underlying DPOAEs.  相似文献   

14.
Both otoacoustic emissions (OAEs) and the relative length of the index and ring fingers (the 2D:4D ratio) exhibit large sex differences, and both exhibit masculinization effects in female homosexuals and bisexuals. Because these sex differences exist in young children, the implication is that both types of measure are affected by prenatal androgen exposure, but it has been unknown to what degree these two types of measure are related. Accordingly, OAEs and the relative lengths of the fingers and the toes were measured in 59 heterosexual females, 55 heterosexual males, 29 homosexual females, and 33 homosexual males. The correlations between the two types of measure were unexpectedly quite low in both the heterosexual and nonheterosexual groups. For example, the correlation between number of spontaneous OAEs per ear and 2D:4D was less than 0.25, for both sexes and both sexual orientations. One interpretation of these results is that the prenatal hormonal mechanisms producing the sex differences in OAEs differ in quality, degree, or timing from those producing the sex differences in relative finger length. That is, OAEs and 2D:4D may be windows onto slightly different prenatal processes or times during prenatal development. Measures of mental-rotation ability also were obtained on these participants, and those correlations with relative finger length also were small.  相似文献   

15.
Click-evoked otoacoustic emissions (CEOAEs) were studied by means of recurrence quantification analysis (RQA) and were found to be endowed with a relevant amount of deterministic structuring. Such a structure showed highly significant correlation with the clinical evaluation of the signal over a data set including 56 signals. Moreover, 1) one of the RQA variables, Trend, was very sensitive to phase transitions in the dynamical regime of CEOAEs, and 2) appropriate use of principal component analysis proved able to isolate the individual character of the studied signals. These results are of general interest for the study of auditory signal transduction and generation mechanisms.  相似文献   

16.
A study of click-evoked otoacoustic emissions (CEOAEs) elicited at stimulation intensities from 35 to >80 dB was carried out by recurrence quantification analysis on signals from both normal and hearing-impaired subjects. In normal subjects, a clear scaling of determinism with increasing stimulation intensity was observed in the click intensity range from 41 to 59 dB. Outside that range and, in particular, above its upper end, subject-dependent features appeared in the form of different maximal levels of determinism. A comparative analysis of responses from hearing-impaired subjects with conductive hearing losses and sensorineural hearing losses suggested that the principal contributor to this behavior is the middle ear and allowed us to discriminate the two pathologies solely on the basis of CEOAEs. These observations are consistent with a simple phenomenological model of the auditory periphery in which different functional modules are sequentially recruited at increasing stimulus intensities, with a consequent rise in CEOAE coherence.  相似文献   

17.
Both otoacoustic emissions (OAEs) and auditory evoked potentials (AEPs) are sexually dimorphic, and both are believed to be influenced by prenatal androgen exposure. OAEs and AEPs were collected from people affected by 1 of 3 categories of disorders of sex development (DSD) — (1) women with complete androgen insensitivity syndrome (CAIS); (2) women with congenital adrenal hyperplasia (CAH); and (3) individuals with 46,XY DSD including prenatal androgen exposure who developed a male gender despite initial rearing as females (men with DSD). Gender identity (GI) and role (GR) were measured both retrospectively and at the time of study participation, using standardized questionnaires. The main objective of this study was to determine if patterns of OAEs and AEPs correlate with gender in people affected by DSD and in controls. A second objective was to assess if OAE and AEP patterns differed according to degrees of prenatal androgen exposure across groups. Control males, men with DSD, and women with CAH produced fewer spontaneous OAEs (SOAEs) – the male-typical pattern – than control females and women with CAIS. Additionally, the number of SOAEs produced correlated with gender development across all groups tested. Although some sex differences in AEPs were observed between control males and females, AEP measures did not correlate with gender development, nor did they vary according to degrees of prenatal androgen exposure, among people with DSD. Thus, OAEs, but not AEPs, may prove useful as bioassays for assessing early brain exposure to androgens and predicting gender development in people with DSD.  相似文献   

18.
Sensitive hearing organs often employ nonlinear mechanical sound processing which produces distortion-product otoacoustic emissions. Such emissions are also recorded from insect tympanal organs. Here we report high frequency distortion-product emissions, evoked by stimulus frequencies up to 95 kHz, from the tympanal organ of a notodontid moth, Ptilodon cucullina, which contains only a single auditory receptor neuron. The 2f1–f2 distortion-product emission reaches sound levels above 40 dB SPL. Most emission growth functions show a prominent notch of 20 dB depth (n = 20 trials), accompanied by an average phase shift of 119°, at stimulus levels between 60 and 70 dB SPL, which separates a low- and a high-level component. The emissions are vulnerable to topical application of ethyl ether which shifts growth functions by about 20 dB towards higher stimulus levels. For the mammalian cochlea, Lukashkin and colleagues have proposed that distinct level-dependent components of nonlinear amplification do not necessarily require interaction of several cellular sources but could be due to a single nonlinear source. In notodontids, such a physiologically vulnerable source could be the single receptor cell. Potential contributions from accessory cells to the nonlinear properties of the scolopidial hearing organ are still unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号