首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Using the whole-cell mode of the patch-clamp technique, we attempted to record inward currents in response to cAMP, inositol 1,4, 5-trisphosphate (IP(3)) and odorants from sensory neurons in the olfactory epithelium of the Xenopus laevis lateral diverticulum (water nose). Dialysis of 100 microM of IP(3) induced inward currents, while dialysis of 1 mM of cAMP into olfactory neurons did not induce any response under the voltage-clamp conditions. Changes in membrane conductance were examined by applying ramp pulses. The slope of the current-voltage (I-V) curve during the IP(3)-induced response was steeper than that after the response, indicating that IP(3) increased the membrane conductance. The water nose olfactory neurons have been shown to respond to both amino acids and volatile odorants. The slopes of I-V curves during responses to amino acids and a volatile odorant, lilial, were similar to those before the responses, suggesting that the total membrane conductance was not changed during responses to amino acids and the volatile odorant.  相似文献   

2.
Odorant receptors activated by amino acids were investigated with patch- clamp techniques in olfactory receptor neurons of the channel catfish, Ictalurus punctatus. The L-isomers of alanine, norvaline, arginine, and glutamate, known to act predominantly on different olfactory receptor sites, activated nondesensitizing inward currents with amplitudes of - 2.5 to -280 pA in olfactory neurons voltage-clamped at membrane potentials of -72 or -82 mV. Different amino acids were shown to induce responses in the same sensory neurons; however, the amplitude and the kinetics of the observed whole cell currents differed among the stimuli and may therefore reflect activation of different amino acid receptor types or combinations of receptor types in these cells. Amino acid- induced currents appeared to have diverse voltage dependence and could also be classified according to the amplitude of the spontaneous channel fluctuations underlying the macroscopic currents. A mean single- channel conductance (gamma) of 360 fS was estimated from small noise whole-cell currents evoked by arginine within the same olfactory neuron in which a mean gamma value of 23.6 pS was estimated from ''large noise'' response to norvaline. Quiescent olfactory neurons fired bursts of action potentials in response to either amino acid stimulation or application of 8-Br-cyclic GMP (100 microM), and voltage-gated channels underlying generation of action potentials were similar in these neurons. However, in whole-cell voltage-clamp, 8-Br-cyclic GMP evoked large rectangular current pulses, and single-channel conductances of 275, 220, and 110 pS were obtained from the discrete current levels. These results suggest that in addition to the cyclic nucleotide-gated transduction channels, olfactory neurons of the channel catfish possess a variety of odor receptors coupled to different types of transduction channels.  相似文献   

3.
The effects ofcGMP and sodium nitroprusside (SNP) on odor responses in isolatedturtle olfactory neurons were examined. The inward current induced bydialysis of a mixture of 1 mM cAMP and 1 mM cGMP was similar to thatinduced by dialysis of 1 mM cAMP or 1 mM cGMP alone. After the neuronswere desensitized by the application of 1 mM cGMP, 3 mM8-(4-chlorophenylthio)-cAMP, a membrane-permeable cAMP analog, did notelicit any current, indicating that both cAMP and cGMP activated thesame channel. Extracellular application of SNP, a nitric oxide (NO)donor, evoked inward currents in a dose-dependent manner. However,application of SNP did not induce any currents after desensitization ofthe cGMP-induced currents, suggesting that SNP-induced currents aremediated via the cGMP-dependent pathway. Application of thecAMP-producing odorants to the neurons induced a large inward currenteven after neurons were desensitized to a high concentration of cGMP orSNP. These results suggest that the transduction pathway independent ofcAMP, cGMP, and NO also contributes to the generation of odor responsesin addition to the cAMP-dependent pathway.

  相似文献   

4.
Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant cGMP analogue, db-cGMP elicited a small response and the response to 0.1 mM citralva was unaffected by db-cGMP. It was concluded that cAMP- independent (probably IP3-independent) pathway greatly contributes to the turtle olfactory transduction.  相似文献   

5.
The electrical properties of olfactory receptor neurons, enzymatically dissociated from the channel catfish (Ictalurus punctatus), were studied using the whole-cell patch-clamp technique. Six voltage-dependent ionic currents were isolated. Transient inward currents (0.1-1.7 nA) were observed in response to depolarizing voltage steps from a holding potential of -80 mV in all neurons examined. They activated between -70 and -50 mV and were blocked by addition of 1 microM tetrodotoxin (TTX) to the bath or by replacing Na+ in the bath with N-methyl-D-glucamine and were classified as Na+ currents. Sustained inward currents, observed in most neurons examined when Na+ inward currents were blocked with TTX and outward currents were blocked by replacing K+ in the pipette solution with Cs+ and by addition of 10 mM Ba2+ to the bath, activated between -40 and -30 mV, reached a peak at 0 mV, and were blocked by 5 microM nimodipine. These currents were classified as L-type Ca2+ currents. Large, slowly activating outward currents that were blocked by simultaneous replacement of K+ in the pipette with Cs+ and addition of Ba2+ to the bath were observed in all olfactory neurons examined. The outward K+ currents activated over approximately the same range as the Na+ currents (-60 to -50 mV), but the Na+ currents were larger at the normal resting potential of the neurons (-45 +/- 11 mV, mean +/- SD, n = 52). Four different types of K+ currents could be differentiated: a Ca(2+)-activated K+ current, a transient K+ current, a delayed rectifier K+ current, and an inward rectifier K+ current. Spontaneous action potentials of varying amplitude were sometimes observed in the cell-attached recording configuration. Action potentials were not observed in whole-cell recordings with normal internal solution (K+ = 100 mM) in the pipette, but frequently appeared when K+ was reduced to 85 mM. These observations suggest that the membrane potential and action potential amplitude of catfish olfactory neurons are significantly affected by the activity of single channels due to the high input resistance (6.6 +/- 5.2 G omega, n = 20) and low membrane capacitance (2.1 +/- 1.1 pF, n = 46) of the cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Inwardly rectifying currents in enzymically dissociated olfactory receptor neurons of rat were studied by using patch-clamp techniques. Upon hyperpolarization to membrane potentials more negative than -100 mV, small inward-current relaxations were observed. Activation was described by a single exponential with a time constant that decreased e-fold for a 21 mV hyperpolarization. The current was not reduced by the external application of 5 mM Ba2+, but was abolished by the addition of 5 mM Cs+ to the bath solution. Increasing the external K+ concentration ([K+]o) to 25 mM dramatically enhanced the current without affecting the voltage range or the kinetics of activation. In 25 mM [K+]o, tail currents reversed at -26 mV, significantly more positive than the K+ equilibrium potential of -44 mV. These characteristics are consistent with those of a mixed Na+/K+ inward rectification that has been reported in several types of neuronal, cardiac and smooth muscle cells. The current may contribute to controlling cell excitability during the response to some odorants.  相似文献   

7.
Application of L-glutamate (1 mM) to corpora allata cells of the adult male cricket Gryllus bimaculatus caused a membrane depolarization of 5.9+/-0.3 mV (mean +/- SE) from a resting potential of -62.2+/-1.3 mV (n=57). The underlying mechanism for this depolarization was studied by applying the two-electrode voltage-clamp technique. Application of L-glutamate (1 mM) elicited an inward current that peaked at 8.1+/-0.7 nA (n = 73) at a holding potential of-50 mV. Both L- and D-aspartate also induced an inward current of almost the same amplitude as L-glutamate, whereas D-glutamate failed to induce an inward current. Glutamate receptor agonists, such as kainate, quisqualate, alpha-amino-3-hydroxy-5-methyl isoxazole-4-propionic acid, and N-methyl-D-aspartate, were ineffective in eliciting inward currents. The glutamate-induced inward current did not reverse even when the holding potential was set to +40 mV. The replacement of extracellular Na+ with choline+ eliminated the inward current. These results strongly suggest that the current induced by glutamate is mediated by a glutamate transporter rather than a glutamate receptor. We further examined the effects of 12 amino acid analogs which are known to be selective inhibitors of the mammalian excitatory amino acid transporters (EAATs) on the corpora allata transporter. From the effects of these inhibitors, we conclude that the glutamate transporter expressed in corpora allata cells of the cricket is similar to the high affinity glutamate transporters cloned from human brain, especially EAAT1 and EAAT3. Unlike mammalian transporters, however, serine-O-sulfate has the most potent action, suggesting the unique feature of the glutamate transporter expressed in the corpora allata.  相似文献   

8.
K Sato  N Suzuki 《Chemical senses》2001,26(9):1145-1156
Olfactory lamellae of teleosts contain two morphologically different types of olfactory receptor neurons (ORNs): ciliated ORNs (cORNs) and microvillous ORNs (mORNs). However, little is known about the functional difference between these two types of ORNs in fish olfaction. We isolated cORNs and mORNs using a Ca(2+)-free solution method from olfactory organs of the rainbow trout and examined their response characteristics to various odorants including fish pheromone candidates by whole-cell voltage-clamp techniques. Quadruple mixture of amino acids, single amino acids, steroids (analogues of DHP; 17 alpha, 20 beta-dihydroxy-4-pregnen-3-one and ECG; etiocholan-3 alpha-ol-17-one glucuronide), prostaglandins (PGFs) and urine samples collected from immature and mature female fish were applied focally to olfactory cilia or microvilli using a multi-barreled stimulation pipette with a pressure ejection system. Inward current responses to odorants were recorded from both cORNs and mORNs at a holding potential of -60 mV. cORNs responded to the amino acid mixture, single amino acids, urine samples and ECG, whereas mORNs responded specifically either to the amino acid mixture or single amino acids. The response profiles of both cORNs and mORNs to various odorants varied widely. None of cORNs and mORNs responded to fish pheromone candidates, PGFs and DHPs. Androgen treatment of immature fish did not influence olfactory sensitivity of both cORNs and mORNs to the amino acid mixture and both urine samples. Amino acid and bile acid analyses by HPLC showed that both urine samples contained 35 amino acids (1-40 mM) and trace amounts of taurocholic acid and glycoursodeoxycholic acid. Our results suggest that cORNs are 'generalists' that respond to a wide variety of odorants, including pheromones, whereas mORNs are 'specialists', specific to amino acids, and also suggest that PGFs and DHPs are not pheromones for the rainbow trout.  相似文献   

9.
Inwardly directed Ca(2+)-dependent chloride currents are thought to prolong and boost the odorant-induced transient receptor currents in olfactory cilia. Cl(-) inward current, of course, requires a sufficiently high intracellular Cl(-) concentration ([Cl(-)](i)). In previous measurements using a fluorescent Cl(-) probe, N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide (MQAE), [Cl(-)](i) of newt olfactory cells was estimated to be only 40 mM. This low value led us to reexamine the [Cl(-)](i) by an improved procedure. When isolated rat olfactory neurons were bathed in Tyrode's solution (150 mM Cl(-)) at room temperature, the [Cl(-)] was 81.5 +/- 13.5 mM (mean +/- SE) in the tip of the dendrite (olfactory knob) and 81.8 +/- 10.2 mM (mean +/- SE) in the soma. The corresponding Cl(-) equilibrium potentials were -15.4 and -15.3 mV, respectively. Therefore, at resting potentials in the range of -90 to -50 mV, Cl(-) currents are predicted to be inward and capable of contributing to the depolarization induced by odorants. Yet, if the cell was depolarized beyond -15 mV, somal Cl(-) currents would be outward and facilitate repolarization during excitation. The measured [Cl(-)] in soma and knob are of interest, because in the cilia the chloride content may be expected to equilibrate with that of the knob in the resting state. They provide a starting point for the decrease in ciliary [Cl(-)] predicted to occur during transduction.  相似文献   

10.
Gene manipulation and molecular biological techniques for the study of olfaction are well developed in mice, while electrophysiological properties of mouse olfactory sensory neurons have been less extensively investigated. We used the whole-cell voltage-clamp technique in mouse isolated olfactory sensory neurons to investigate both voltage-gated and transduction currents. Voltage-gated currents were composed of transient inward currents followed by outward currents with transient and sustained components. Of the tested olfactory sensory neurons, 12% responded to the odorant cineole with an inward current. Caged compounds were introduced into the cytoplasm through the patch pipette and flash photolysis of caged cyclic nucleotides activated an inward current in 94% of the cells. When the flash was localized at the cilia, the response latency, rising time and duration were shorter than when the flash illuminated the soma. The amplitude of the photolysis response was dependent on light intensity and the relation was fitted by the Hill equation, with a Hill coefficient of 3.2. These results demonstrate that it is possible to obtain recordings in the whole-cell configuration from olfactory sensory neurons isolated from the mouse and that voltage-gated currents and transduction properties are largely similar to those of amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号