首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 109 毫秒
1.
茶尺蠖幼虫脑的解剖结构   总被引:1,自引:0,他引:1  
【目的】明确茶尺蠖Ectropis obliqua Prout 5龄幼虫脑解剖结构,并分析和构建幼虫脑以及脑内部各神经髓结构的三维结构模型。【方法】采用免疫组织化学方法,利用突触蛋白抗体,染色标记脑内神经突触,定位突触联系密集分布的区域,获得脑内部神经髓的结构。利用激光共聚焦显微镜获取脑扫描图像,然后利用三维图像分析软件AMIRA进行图像分析,构建脑的三维结构模型,并计算脑以及脑内各神经髓结构的体积。【结果】突触蛋白抗体染色显示,茶尺蠖5龄幼虫脑内具有很多神经突触联系密集分布的区域,这些不同区域即为脑的不同神经髓结构。茶尺蠖幼虫脑主要包括前脑、中脑和后脑3个组成部分。其中前脑最大,包括成对的视叶、蕈形体、前脑桥和侧副叶以及不成对的中央体。视叶位于前脑的两侧后端。蕈形体位于脑半球正中间位置。侧副叶在中央体的下前方两侧。中央体在脑的正中心。前脑桥在中央体的上方后侧。除这些形态结构明显的神经髓区域外,前脑还包括大量内部边界不明显的神经髓区域,位于前脑左右两侧以及背侧和腹侧,这些区域被总称为中间脑,占整个脑神经髓的66%。触角叶为中脑的主要组成部分,在脑的下部最前端,为一对球状结构。后脑在脑的腹侧和触角叶下方,即围咽神经索进入脑的入口处。【结论】构建了茶尺蠖5龄幼虫脑以及各神经髓结构三维模型,分析了脑内各个神经髓之间的空间位置关系,明确了各神经髓的体积。茶尺蠖幼虫脑体积小而且结构简单的特征与其幼期视觉、嗅觉等感觉器官不发达、活动能力弱、行为简单的生物学习性相对应。  相似文献   

2.
烟青虫成虫脑结构解剖和三维模型构建   总被引:1,自引:0,他引:1  
【目的】解剖分析烟青虫Helicoverpa assulta成虫脑的结构,并构建脑三维结构数字化模型。【方法】利用神经突触蛋白抗体,对烟青虫成虫脑进行免疫组织化学染色标记,利用共聚焦激光扫描显微镜获得脑扫描数码图像,并结合三维图像分析软件对烟青虫脑结构进行识别分析,构建三维模型。【结果】突触蛋白抗体免疫染色将烟青虫脑和颚神经节的神经髓区域清晰标记出来。烟青虫成虫脑与颚神经节愈合而成为一体,中间具有一个孔洞,为食道穿过的通道。脑主要包括前脑、中脑和后脑3部分。依据染色标记结果识别和构建了至少16个脑神经髓结构。这些神经髓包括边界清晰的视叶、前视结节、蕈形体、中央复合体和触角叶及其亚结构。除此之外,还包括围绕这些神经髓的其他前脑神经髓区域,但这部分前脑神经髓内部边界模糊,不容易细分,而将其与颚神经节区域作为一个整体标记为中间脑,占脑总神经髓的55.05%。【结论】识别出烟青虫脑的主要功能结构区域,并成功构建了三维模型。该研究结果为进一步研究烟青虫脑接收、处理和整合感觉信息及调控行为的机制奠定了解剖学基础,并为研究烟青虫或其他昆虫脑结构发育、变异和重塑提供结构形态和体积大小依据。  相似文献   

3.
【目的】阐述绿盲蝽Apolygus lucorum中枢神经系统的组成,辨识各组成部分的神经节解剖结构及其形态,计算中枢神经系统各神经节结构体积大小、解析其空间分布关系以及连接模式。【方法】采用免疫组织化学方法,使用突触蛋白抗体对绿盲蝽中枢神经系统神经髓进行染色标记,利用共聚焦激光扫描显微镜获取中枢神经系统各结构数码图像,使用三维图像分析软件对绿盲蝽中枢神经系统进行分析,并构建三维模型。【结果】绿盲蝽中枢神经系统从前往后分别由脑神经节、咽下神经节、前胸神经节和后部神经节组成。脑、咽下神经节和前胸神经节3个神经节融合在一块,形成脑-咽下神经节-前胸神经节复合体,并通过长的神经连索与后部神经节相连,从外观上看似由2个大的神经节构成,这种神经节愈合形式尚未在昆虫中发现过。前胸神经节与后部神经节分离,二者由长的神经连索连接起来。除前胸神经节由单独的神经原节构成外,其他3个神经节又由多个神经原节融合而成。脑包括前脑、中脑和后脑3部分。咽下神经节包括上颚神经节、下颚神经节和下唇神经节。后部神经节包括中胸、后胸和腹部神经节3部分。【结论】明确了绿盲蝽中枢神经系统的神经节构成,发现了绿盲蝽中枢神经系统各神经节的高度融合特性。该项研究结果为研究绿盲蝽中枢神经系统的发育、重塑和系统演化奠定了形态学基础,为研究中枢神经元形态、分布以及其对昆虫生理和行为的功能调控机制提供了结构框架。  相似文献   

4.
【目的】明确烟芽夜蛾Heliothis virescens雄成虫脑的结构,构建和打印脑的三维模型,并将该技术扩展应用到黑腹果蝇Drosophila melanogaster、西方蜜蜂Apis mellifera和沙漠蝗Schistocerca gregaria上,制作这些模式昆虫脑的3D打印模型。【方法】首先采用突触蛋白抗体免疫组织化学染色标记的方法研究烟芽夜蛾雄成虫脑的结构,利用激光扫描共聚焦显微镜获取脑解剖结构图像,利用图形分析软件创建三维脑模型,并利用3D打印技术进行三维图像打印。【结果】鉴定出烟芽夜蛾雄成虫脑及颚神经节、触角叶、视叶、前视结节、中央体和蕈形体等主要神经髓结构,并构建了三维数字化模型。首次成功应用3D打印技术打印了烟芽夜蛾雄成虫脑的三维数字化模型,获得实体模型。并将该技术进一步应用到黑腹果蝇、西方蜜蜂和沙漠蝗,获得了这些昆虫的脑实体模型。基于脑模型,对这些昆虫的味觉中枢、嗅觉中枢、视觉中枢和学习及记忆中枢等神经髓结构做了系统比较。【结论】3D打印模型为脑解剖结构的观察提供了新形式,并提供了便利工具。3D打印所得脑实体模型大小适中,可以放在手中,任意旋转,从不同角度观察昆虫脑不规则结构的形态、位置和空间关系,也便于比较不同昆虫脑结构异同,加深对昆虫脑结构和功能及其演化的认识。  相似文献   

5.
通过Mallory和HE染色,对光肩星天牛Anoplophora glabnpenn脑部显微结构进行了观察.结果表明,光肩星天牛的脑由前脑、中脑、后脑三部分组成.前脑叶髓层包括一对蕈形体、一个中央体、一个脑桥体和一对附叶,其中每个蕈形体仅有一个帽状的蕈体冠.中脑触角叶较大,由九簇放射状排列的触角神经束组成,中央的一束较粗,说明其嗅觉发达.后脑较小.  相似文献   

6.
李娜  李华  那杰 《昆虫知识》2008,45(2):327-329
蟋蟀脑由前脑、中脑和后脑三部分组成。前脑由1对蕈形体、中央复合体和视叶构成;每个蕈形体由2个冠、柄及与柄相连的α叶和β叶组成,是信息联络整合部位;中央复合体由中央体和脑桥组成,主要参与感觉信息的加工过程;视叶由神经节层、外髓和内髓组成,是视觉系统的中心。中脑由主要组成成分为嗅觉纤维球的嗅叶组成,是嗅觉系统的中心。后脑向后与食道下神经节相连。  相似文献   

7.
【目的】鉴定雄性棉铃虫Helicoverpa armigera成虫触角性信息素感器嗅觉受体神经元的功能、形态及中枢投射路径。【方法】利用单感器记录技术记录棉铃虫嗅觉受体神经元对性信息素的反应,同时采用荧光染料作为示踪剂染色标记嗅觉受体神经元;使用免疫组织化学方法处理相应的脑组织,标记脑内触角叶的神经纤维球结构;用激光扫描共聚焦显微镜获取图像数据,使用图形软件ZEN和Amira 4.1.1进行三维结构重建。【结果】记录到雄性棉铃虫成虫触角上长毛形感器对主要性信息素成分Z11-16∶Ald产生明显的电生理反应,并成功染色标记了该感器内的嗅觉受体神经元。染色标记显示该感器内具有两个嗅觉受体神经元,其轴突通过触角神经分别投射触角叶内的云状体神经纤维球和普通神经纤维球。【结论】单感器记录与神经元示踪两技术结合能够用于鉴定昆虫触角嗅觉受体神经元的功能、形态和投射至神经纤维球的路径。与赖氨酸钴方法比较,使用荧光染料法进行神经元示踪,操作更简便,且易于进行三维空间分析,为调查棉铃虫其他嗅觉神经元的投射路径以明确外周气味受体感受与中枢系统的联系提供了有力技术支持。  相似文献   

8.
【目的】揭示绿盲蝽Apolygus lucorum腹神经节的组成结构。【方法】采用免疫组织化学染色方法,利用突触蛋白抗体对绿盲蝽成虫的腹神经节进行免疫标记,激光共聚焦扫描显微镜扫描照相获得原始数据,用图像分析软件进行标记,构建三维结构模型。【结果】绿盲蝽成虫腹神经节位于腹神经索的末端,与其前方的后胸神经节和中胸神经节紧密融合,形成后部神经节。与脑和胸神经节类似,腹神经节由周围的细胞体和内部的神经髓构成。腹神经节的神经纤维束主要包括位于腹侧的两条纵向神经连索和向两侧发出的9束神经纤维。9束神经纤维连接着9个神经原节,即富含突触联系的神经髓。这些神经原节紧密融合,无明显的边界,最后两节形成膨大的末端腹神经节。两侧的神经原节由横向的神经连锁连接起来。腹神经节外周的细胞体数量较多,排列紧密,大小一致,仅在前端背侧中间和后端腹侧中间位置分别有2个和5个体积较大的细胞体。【结论】本研究结果明确了绿盲蝽腹神经节的结构,为进一步研究昆虫的行为调控及神经系统发育和演化奠定一定的形态学基础。  相似文献   

9.
目的:研究昆虫触角感受器传入神经末梢在脑内投射的空间布局,揭示触角感觉信息传入的神经结构.方法:使用氯化镍神经元示踪标记技术,对双斑蟋触角感受嚣传入神经纤维进行可视化标记,观察研究触角传入神经末梢在脑内的走行形态及分布规律.结果:双斑蟋触角感受器传入神经纤维进入中脑后大量的神经末梢终止在同侧的触角叶和触角机械感觉运动中枢,部分神经纤维向前走行,其神经末梢终止在前脑,还有部分神经纤维向后下行,经同侧神经索,其神经末梢终止在食道下神经节.结论:双斑蟋触角感受器传入神经纤维进入脑后主要投射到触角叶和触角机械感觉运动中枢,少部分投射到前脑和食道下神经节.这种多重投射模式可能在双斑蟋嗅觉信息传递整合、触角运动调节、味觉和摄食活动等方面发挥重要作用.  相似文献   

10.
昆虫嗅觉系统结构与功能研究进展   总被引:1,自引:0,他引:1  
万新龙  杜永均 《昆虫学报》2015,58(6):688-698
昆虫的脑由前脑、中脑和后脑组成,其中前脑含有高级感觉中枢,如蘑菇体和中央复合体,控制昆虫的学习、记忆和运动等高级神经活动;中脑包含触角叶,是嗅觉神经中心;而后脑则通常不发达,主要包括内分泌神经元和控制进食与消化的运动神经元。不同于其他物种,昆虫由于其特殊的生活习性,听觉和视觉系统相对退化,主要依赖嗅觉来捕食、交流和求偶,因此嗅觉系统尤其发达。本文综述了目前对昆虫的脑部主要神经结构和功能(中央复合体、蕈形体和触角叶结构)以及昆虫脑部结构遗传变异(性别异构,不同发育时期、不同昆虫以及昆虫与其他动物的脑部结构差异)的研究进展,并总结了目前昆虫脑对信号的加工处理和识别机制的研究结果。  相似文献   

11.
Central projections of neurons innervating sensory structures on the head of larval Manduca sexta were traced by using methods of anterograde cobalt-diffusion. Regions of the deutocerebrum and tritocerebrum in the brain receive input from the antenna, labrum, maxilla, labial palps, hypopharynx and other unidentified regions of the buccal cavity. Antennal, maxillary and labial inputs project to the larval antennal centre (LAC) of the deutocerebrum. Stemmatal neurons and a few antennal neurons project into the protocerebrum. The suboesophageal ganglion (SEG) receives input from mechanosensory neurons in all parts of the head and its sensory appendages. Some mechanosensory neurons project further to the first thoracic ganglion. In addition to receiving input from chemosensory neurons of the maxilla, the SEG may also receive chemosensory input from epipharyngeal sensilla of the labrum.  相似文献   

12.
Seidel C  Bicker G 《Tissue & cell》1996,28(6):663-672
The biogenic amine serotonin is a neurotransmitter and modulator in both vertebrates and invertebrates. In the CNS of insects, serotonin is expressed by identifiable subsets of neurons. In this paper, we characterize the onset of expression in the brain and suboesophageal ganglion of the honeybee during pupal development. Several identified serotonin-immunoreactive neurons are present in the three neuromeres of the suboesophageal ganglion the dorsal protocerebrum, and the deutocerebrum at pupal ecdysis. Further immunoreactive neurons are incorporated into the developing pupal brain in two characteristic developmental phases. During the first phase, 5 days after pupal ecdysis, serotonin immunoreactivity is formed in the protocerebral central body, the lamina and lobula, and the deutocerebral antennal lobe. During the second phase, 2 days later, immunoreactivity appears in neurons of the protocerebral noduli of the central complex, the medulla, and the pedunculi and lobes of the mushroom bodies. Three novel serotonin-immunoreactive neurons that innervate the central complex and the mushroom bodies can be individually identified.  相似文献   

13.
The neuronal connections of the tritocerebral commissures of Periplaneta americana were studied in the brain-suboesophageal ganglion complex and the stomatogastric nervous system by means of heavy metal iontophoresis through cut nerve ends followed by silver intensification. The tritocerebral commissure 1 (Tc1) contains mainly the processes of the subpharyngeal nerve (Spn) whose neurons are located in both tritocerebral lobes and in the frontal ganglion. Some neurons of the frontal ganglion project through the Tc1 to the contralateral tritocerebrum. A few fibers in this commissure were observed projecting to the protocerebrum and the suboesophageal ganglion. There are tritocerebral neurons which pass through the Tc1 or the tritocerebral commissure 2 (Tc2) and extend on into the stomatogastric nervous system. One axon of a descending gaint neuron appears in the Tc2. This neuron lies in the tritocerebrum and connects the brain to the contralateral side of the ventral nerve cord. In addition, sensory fibers of the labral nerve (Ln) traverse both commissures to the opposite tritocerebrum. The anatomical and physiological relevance of the identified neuronal pathways is discussed. © 1995 Wiley-Liss, Inc.  相似文献   

14.
The number and location of neurons, in the central nervous system, that project into the frontal connective was studied in the locust by using retrograde neurobiotin staining. Staining one frontal connective revealed some 70 neurons in the brain. Most of these were located within both tritocerebral lobes. Additional groups of neurons were located within the deutocerebrum and protocerebrum. Some 60 neurons were labelled in the suboesophageal ganglion. These formed nine discernable populations. In addition, two neurons were located in the prothoracic ganglion and two neurons in the first abdominal neuromere of the metathoracic ganglion. Thus, some 250 neurons located within the head ganglia, and even neurons in thoracic ganglia, project into the ganglia of the enteric nervous system. This indicates that the coordination between the central and enteric ganglia is much more complex than previously thought. With the exception of some previously described dorsal unpaired median neurons and a few motor neurons in the head ganglia, the identity and function of most of these neurons is as yet unknown. Possible functions of the neurons in the thoracic ganglia are discussed.  相似文献   

15.
The distribution of FMRFamide (FMRFa)-like immunoreactivity (LI) was studied in the brain and subesophageal ganglion of Triatoma infestans, the insect vector of Chagas disease. The neuropeptide displayed a widespread distribution with immunostained somata in the optic lobe, in the anterior, lateral, and posterior soma rinds of the protocerebrum, and around the antennal sensory and mechanosensory and motor neuropils of the deutocerebrum. FMRFa-immunoreactive profiles of the subesophageal ganglion were seen in the mandibular, maxillary, and labial neuromeres. Immunostained neurites were detected in the medulla and lobula of the optic lobe, the lateral protocerebral neuropil, the median bundle, the calyces and the stalk of the mushroom bodies, and the central body. In the deutocerebrum, the sensory glomeruli showed a higher density of immunoreactive processes than the mechanosensory and motor neuropil, whereas the neuropils of each neuromere of the subesophageal ganglion displayed a moderate density of immunoreactive neurites. Colocalization of FMRFa-LI and crustacean pigment-dispersing hormone-LI was found in perikarya of the proximal optic lobe, the lobula, the sensory deutocerebrum, and the labial neuromere of the subesophageal ganglion. The distribution pattern of small cardioactive peptide B (SCPB)-LI was also widespread, with immunolabeled somata surrounding every neuropil region of the brain and subesophageal ganglion, except for the optic lobe. FMRFa- and SCPB-LIs showed extensive colocalization in the brain of this triatomine species. The presence of immunolabeled perikarya displaying either FMRFa- or SCPB-LI confirmed that each antisera identified different peptide molecules. The distribution of FMRFa immunostaining in T. infestans raises the possibility that FMRFa plays a role in the regulation of circadian rhythmicity. The finding of immunolabeling in neurosecretory somata of the protocerebrum suggests that this neuropeptide may also act as a neurohormone.This work was sponsored by the Facultad de Ciencias Biomédicas, Universidad Austral. Part of this work was performed at the Division of Neurobiology, Arizona Research Laboratories (Tucson, Arizona) with the support of a Fulbright Research Award to B.P.S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号