首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Many arthropods produce clusters of eggs, but an unambiguous explanation for the evolution of egg clustering is still lacking. We test several hypotheses for the production of egg clusters by the predatory mite Iphiseius degenerans. This predator feeds on pollen, thrips larvae and nectar in flowers, but oviposits in clusters in tufts of leaf hairs (acarodomatia), where eggs run a lower risk of being killed by thrips, the prey of this predatory mite. The observed clustering is not caused by a shortage of oviposition sites; females preferably oviposit in a domatium containing eggs rather than in an empty domatium. To explain this preference, we first examined the effect of egg clusters on the risk of cannibalism. We found that eggs are invulnerable to cannibalism, whereas larvae emerging from single eggs or from clusters were equally vulnerable. Subsequently, we considered the killing of eggs resulting from counter-attacks by prey, i.e. the western flower thrips. We found no indication that a cluster of eggs protects eggs from predation by thrips. However, when eggs were clustered in a domatium rather than scattered over domatia, the proportion of eggs killed by thrips was lower. Hence, oviposition in clusters has no effect on its own and oviposition in domatia reduces predation risk by thrips, but oviposition in clusters in domatia leads to a synergistic effect on the survival of predator eggs. This synergism probably arises because eggs in clusters within tufts of leaf hairs are more difficult for thrips to reach. These experiments highlight a novel explanation of egg clustering, i.e. adaptation to counter-attacking prey. Moreover, they show that plant domatia protect predator eggs from predation.  相似文献   

2.
Attacking prey is not without risk; predators may endure counterattackby the prey. Here, we study the oviposition behaviour of a predatory mite(Iphiseius degenerans) in relation to its prey, thewesternflower thrips (Frankliniella occidentalis). This thrips iscapable of killing the eggs of the predator. Thrips and predatory mites - apartfrom feeding on each other - can also feed and reproduce on a diet of pollen.Because thrips may aggregate at pollen patches, such patches may be risky foroviposition by the predatory mites. We found that, in absence of thrips,predatory mites lay their eggs close to pollen, but further away when thripsarepresent. Predatory mite eggs near pollen were killed more frequently by thripsthan when they were deposited further away. The oviposition behaviour of thepredatory mite was also studied in absence of thrips, but in presence of thealarm pheromone of thrips. This pheromone is normally secreted upon contactwithpredators or competitors. When applied close to the pollen, predatory mitesoviposited significantly further away from it. When the alarm pheromone wasapplied away from the food source, most eggs were found near the pollen. Theseresults indicate that female predatory mites show flexible ovipositionbehaviourin response to the presence of their counterattacking prey.  相似文献   

3.
Associations between mites and leaf domatia have been widely reported, but little is known about their consequences for either plants or mites. By excising domatia from leaves of the laureltinus, Viburnum tinus L. (Caprifoliaceae), in the garden and laboratory, we showed that domatia alter the abundance, distribution, and reproduction of potential plant mutualists. Over 4 months, leaves with domatia on six garden shrubs had 2–36 times more predatory and microbivorous mites, and more mite eggs than leaves without domatia. However, this effect varied among plants and was weaker on one shrub with few mites on its leaves. Domatia also influenced the distribution of mites on leaves. A significantly higher fraction of mites, representing all life stages, was found in vein axils of leaves with domatia than in vein axils on leaves without domatia. Single-leaf experiments in the laboratory showed that domatia enhanced reproduction by the predatory mite, Metaseiulus occidentalis, especially at low relative humidity (30–38%). When domatia were removed, oviposition was reduced significantly only at low relative humidity, suggesting that domatia provide mites with refuge from environmental extremes on the leaf surface. Moreover, the use of domatia by predatory mites may reduce the impact of some plant enemies. In two experiments where prey consumption was measured, M. occidentalis ate significantly higher percentages of the eggs of the two-spotted spider mite (Tetranychus urticae). Our results are consistent with the viewpoint that mite-domatia associations are mutualistic. By directly aiding and abetting the third trophic level, plants with leaf domatia may increase the efficiency of some predaceous and microbivorous mites in consuming plant enemies.  相似文献   

4.
It is generally assumed that the choice of oviposition sites in arthropods is affected by the presence of food for the offspring on the one hand and by predation risk on the other hand. But where should females oviposit when the food itself poses a predation risk for their offspring? Here, we address this question by studying the oviposition behaviour of the predatory mite Amblyseius swirskii in reaction to the presence of its counterattacking prey, the western flower thrips Frankliniella occidentalis. We offered the mites a choice between two potential oviposition sites, one with and one without food. We used two types of food: thrips larvae, which are predators of eggs of predatory mite but are consumed by older predator stages, and pollen, a food source that poses no risk to the predators. With pollen as food, the predators preferred ovipositing on the site with food. This might facilitate the foraging for food by the immature offspring that will emerge from the eggs. With thrips as food, female predators preferred ovipositing on the site without thrips. Predators that oviposited more on the site with thrips larvae killed more thrips larvae than females that oviposited on the site without food, but this did not result in higher oviposition. This suggests that the females killed thrips to protect their offspring. Our results show that predators display complex anti-predator behaviour in response to the presence of counter-attacking prey.  相似文献   

5.
Banker plants can enhance biological pest control by providing both floral resources and appropriate oviposition sites, e.g. through acarodomatia, to predator species. The use of materials mimicking domatia i.e. artificial domatia may be an economically favourable alternative to the use of banker plants bearing domatia. The aim of the present study was to identify materials that are able to host eggs of the Neoseiulus californicus predatory mite but not those of the Tetranychus urticae pest mite. In a laboratory experiment, the oviposition of predatory and phytophagous mites were compared in Petri dishes containing leaves. The different modalities compared were (i) natural domatia of Viburnum tinus or (ii) one of twelve potential artificial domatia materials. The overall oviposition response of predatory mites to all artificial domatia was similar to that of the natural domatia. The oviposition of the Tetranychus urticae pest mite did not increase in response to the artificial domatia. Five artificial domatia hosted as many eggs of the predatory mite as observed in the natural domatia. The effect of the physical properties of artificial domatia was also tested and N. californicus was found to favour the artificial domatia that had high heat retention capacities for oviposition. Three of these artificial domatia were tested on rose plants in a greenhouse experiment; none of which enhanced the biological control on the plants under these conditions. The present study highlights the difficulty in identifying and using suitable artificial domatia as substitutes to banker plants in biological pest control efforts.  相似文献   

6.
A leaf disc bioassay was employed to examine the effects of temperature and predator age on functional response of an acarophagous thrips, Scolothrips takahashii Priesner, to hawthorn spider mite, Tetranychus viennensis Zacher, in the laboratory. The results indicated that the predatory thrips exhibited type-II functional responses against the mites under various temperatures, and that females are more voracious than males. Analysis showed that temperature had significant effects on the predatory capacity of adult thrips over the range of 20–35 °C. Attack rate in females linearly increased with temperature while in males it was independent of temperature. Handling times in both males and females decreased linearly with increasing temperature. Extended response models describing the functional response with temperature incorporated as a parameter were developed, yielding an estimated maximum numbers of prey attacked at four temperatures were 38.38, 55.06, 71.74 and 88.42 eggs per day for females, and 15.11, 26.11, 37.11 and 48.01 eggs per day for males, respectively. The age of predator affected both the type of the functional response shown and the magnitude of predation by S.␣takahashii on the spider mite. Females of various ages exhibited Type-II functional responses with similar attack rates, but handling time prolonged linearly as age increased: the handling times in 15- and 18-d-old females were significantly longer than in 6-d-old thrips. However, Type-I functional responses were determined for males aged 12 d or more; the maximum number of prey eaten in 24 h decreased as age increased. The implications of the results for the management of hawthorn spider mite are discussed.  相似文献   

7.
Antipredator behaviour of prey costs time and energy, at the expense of other activities. However, not all predators are equally dangerous to all prey; some may have switched to feeding on another prey species, making them effectively harmless. To minimize costs, prey should therefore invest in antipredator behaviour only when dangerous predators are around. To distinguish these from harmless predators, prey may use cues related to predation on conspecifics, such as odours released by a predator that has recently eaten conspecific prey or alarm pheromones released by attacked prey. We studied refuge use by a herbivorous/omnivorous thrips, Frankliniella occidentalis, in response to odours associated with a generalist predatory bug, Orius laevigatus, fed either with conspecific thrips or with other prey. The refuge used by thrips larvae is the web produced by its competitor, the two-spotted spider mite, Tetranychus urticae, where thrips larvae experience lower predation risk because the predatory bug is hindered by the web. Thrips larvae moved into this refuge when odours associated with predatory bugs that had previously fed on thrips were present, whereas odours from predatory bugs that had fed on other prey had less effect. We discuss the consequences of this antipredator behaviour for population dynamics. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

8.
Plants may protect themselves against herbivorous arthropods by providing refuges to predatory arthropods, but they cannot prevent herbivores from taking countermeasures or even from reaping the benefits. To understand whether plants benefit from providing self‐made refuges (so‐called domatia), it is not only necessary to determine the fitness consequences for the plant, but also to assess (1) against which factors the refuge provides protection, (2) why predatory arthropods are more likely to monopolise the refuge, and (3) how herbivorous and predatory arthropods respond to and affect each other in and outside the refuge. In this article, we focus on the last aspect by studying the dynamics of refuge use of a predatory mite (Typhlodromalus aripo) and its consequences for a herbivorous mite (Mononychellus tanajoa) on cassava plants in Benin, West Africa. The refuge, located in‐between the leaf primordia of the cassava apex, is thought to provide protection against abiotic factors and/or intraguild predators. To test whether the predator waits for prey in the apex or comes out, we sampled predator‐prey distributions on leaves and in the apex at 4 hour‐intervals over a period of 24 hours. The predatory mites showed pronounced diurnal changes in within‐plant distribution. They were in the apices during the day, moved to the young leaves during night and returned to the apices the next morning. Nocturnal foraging bouts were more frequent when there were more herbivorous mites on the leaves near the apex. However, the foraging predators elicited an avoidance response by mobile stages of their prey, since these were more abundant on the first 20 leaves below the apex during late afternoon, than on the same leaves during night. These field observations on cassava plants show that (1) during daytime predatory mites monopolise the apical domatia, (2) they forage on young leaves during night and (3) elicit avoidance by within‐plant, vertical migration of mobile stages of the herbivorous mites. We hypothesize that cassava plants benefit from apical domatia by acquiring protection for their photosynthetically most active, young parts, because predatory mites (1) protect primordial leaves in the apex, (2) reduce the densities of herbivorous mites on young leaves, and (3) cause herbivorous mites to move down to less profitable older leaves.  相似文献   

9.
In egg‐laying animals with no post‐oviposition parental care, between‐ or within‐patch oviposition site selection can determine offspring survival. However, despite the accumulation of evidence supporting the substantial impact predators have on oviposition site selection, few studies have examined whether oviposition site shift within patches (“micro‐oviposition shift”) reduces predation risk to offspring. The benefits of prey micro‐oviposition shift are underestimated in environments where predators cannot disperse from prey patches. In this study, we examined micro‐oviposition shift by the herbivorous mite Tetranychus kanzawai in response to the predatory mite, Neoseiulus womersleyi, by testing its effects on predator patch exploitation in situations where predatory mites were free to disperse from prey patches. Adult T. kanzawai females construct three‐dimensional webs on leaf surfaces and usually lay eggs under the webs; however, females that have experienced predation risks, shift oviposition sites onto the webs even in the absence of current predation risks. We compared the predation of eggs on webs deposited by predator‐experienced females with those on leaf surfaces. Predatory mites left prey patches with more eggs unpredated when higher proportions of prey eggs were located on webs, and egg survival on webs was much higher than that on leaf surfaces. These results indicate that a micro‐oviposition shift by predator‐experienced T. kanzawai protects offspring from predation, suggesting adaptive learning and subsociality in this species. Conversely, fecundity and longevity of predator‐experienced T. kanzawai females were not reduced compared to those of predator‐naïve females; we could not detect any costs associated with the learned micro‐oviposition shift. Moreover, the previously experienced predation risks did not promote between‐patch dispersal of T. kanzawai females against subsequently encountered predators. Based on these results, the relationships of between‐patch oviposition site selection and micro‐oviposition shift are discussed.  相似文献   

10.
Herbivores suffer significant mortality from predation and are therefore subject to natural selection on traits promoting predator avoidance and resistance. They can employ an array of strategies to reduce predation, for example through changes in behaviour, morphology and life history. So far, the anti-predator response studied most intensively in spider mites has been the avoidance of patches with high predation risk. Less attention has been given to the dense web produced by spider mites, which is a complex structure of silken threads that is thought to hinder predators. Here, we investigate the effects of the web produced by the red spider mite, Tetranychus evansi Baker & Pritchard, on its interactions with the predatory mite, Phytoseiulus longipes Evans. We tested whether female spider mites recognize predator cues and whether these can induce the spider mites to produce denser web. We found that the prey did not produce denser web in response to such cues, but laid more eggs suspended in the web, away from the leaf surface. These suspended eggs suffered less from predation by P. longipes than eggs that were laid on the leaf surface under the web. Thus, by altering their oviposition behaviour in response to predator cues, females of T. evansi protect their offspring.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号