首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.  相似文献   

2.
FabA and FabZ are the two dehydratase enzymes in Escherichia coli that catalyze the dehydration of acyl intermediates in the biosynthesis of fatty acids. Both enzymes form obligate dimers in which the active site contains key amino acids from both subunits. While FabA is a soluble protein that has been relatively straightforward to express and to purify from cultured E. coli, FabZ has shown to be mostly insoluble and only partially active. In an effort to increase the solubility and activity of both dehydratases, we made constructs consisting of two identical subunits of FabA or FabZ fused with a naturally occurring peptide linker, so as to force their dimerization. The fused dimer of FabZ (FabZ‐FabZ) was expressed as a soluble enzyme with an ninefold higher activity in vitro than the unfused FabZ. This construct exemplifies a strategy for the improvement of enzymes from the fatty acid biosynthesis pathways, many of which function as dimers, catalyzing critical steps for the production of fatty acids.  相似文献   

3.
Polyunsaturated fatty acids (PUFAs) are made in some strains of deep‐sea bacteria by multidomain proteins that catalyze condensation, ketoreduction, dehydration, and enoyl‐reduction. In this work, we have used the Udwary‐Merski Algorithm sequence analysis tool to define the boundaries that enclose the dehydratase (DH) domains in a PUFA multienzyme. Sequence analysis revealed the presence of four areas of high structure in a region that was previously thought to contain only two DH domains as defined by FabA‐homology. The expression of the protein fragment containing all four protein domains resulted in an active enzyme, while shorter protein fragments were not soluble. The tetradomain fragment was capable of catalyzing the conversion of crotonyl‐CoA to β‐hydroxybutyryl‐CoA efficiently, as shown by UV absorbance change as well as by chromatographic retention of reaction products. Sequence alignments showed that the two novel domains contain as much sequence conservation as the FabA‐homology domains, suggesting that they too may play a functional role in the overall reaction. Structure predictions revealed that all domains belong to the hotdog protein family: two of them contain the active site His70 residue present in FabA‐like DHs, while the remaining two do not. Replacing the active site His residues in both FabA domains for Ala abolished the activity of the tetradomain fragment, indicating that the DH activity is contained within the FabA‐homology regions. Taken together, these results provide a first glimpse into a rare arrangement of DH domains which constitute a defining feature of the PUFA synthases.  相似文献   

4.
在大肠杆菌(Escherichia coli)脂肪酸合成酶体系中,fabA基因编码有双功能的3-羟基脂酰ACP脱水异构酶,其异构产物能被fabB基因编码的3-酮基脂酰ACP合成酶Ⅰ延伸,合成不饱和脂肪酸,该FabA-FabB途径被认为是缺氧条件下不饱和脂肪酸合成的经典途径.生物信息学分析发现,苜蓿中华根瘤菌(Sinorhizobium meliloti)的SmFabA与EcFabA相似性达到60.6%,具有相同的保守活性位点和两个保守的α螺旋结构;SmFabB与EcFabB相似性达到61.1%,具有相同的Cys-His-His活性中心.用携带SmfabASmfabB的质粒载体遗传互补大肠杆菌温度敏感突变株CY57和CY242,在添加三氯森(TCL)抑制烯脂酰ACP还原酶活性的条件下,转化子能在42℃恢复生长,且放射性薄层层析能检测到转化子中不饱和脂肪酸棕榈油酸(Δ9C16:1)和十八碳烯酸(Δ11C18:1)的合成.体外重建脂肪酸合成反应表明,SmFabA能催化羟脂酰ACP的脱水反应且能够使反-2-癸烯酰ACP异构化,SmFabB能催化不同链长的脂酰ACP和丙二酸单酰ACP的聚合反应.另外,未得到SmFabASmFabB的突变株,表明SmFabA和SmFabB可能是苜蓿中华根瘤菌脂肪酸合成酶系中必不可少的关键蛋白.上述结果证实了苜蓿中华根瘤菌fabAfabB两个基因在不饱和脂肪酸合成中的功能.  相似文献   

5.
The disposal and more efficient utilization of marine wastes is becoming increasingly serious. A culture media for microorganisms has been prepared from squid internal organs that are rich in polyunsaturated fatty acids (PUFAs). Both freshwater and marine bacteria grew well in this medium and some bacteria accumulated PUFAs in their lipids, suggesting uptake of exogenous PUFAs. Higher PUFA accumulations were observed in Escherichia coli mutant cells defective either in unsaturated fatty acid biosynthesis or fatty acid degradation, or both, compared to those without these mutations. Therefore, PUFA accumulation in cells can be improved by genetic modification of fatty acid metabolism in the bacteria. Squid internal organs would be a good source of medium, not only for marine bacteria but also for freshwater bacteria, and that this process may be advantageous to make efficient use of the fishery wastes and to produce PUFA-containing microbial cells and lipids.  相似文献   

6.
In marine bacteria and some thraustochytrids (marine stramenopiles) long-chain polyunsaturated fatty acids (LC-PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are produced de novo by PUFA synthases. These large, multi-domain enzymes carry out the multitude of individual reactions required for conversion of malonyl-CoA to the final LC-PUFA products. Here we report on the release of fatty acids from the PUFA synthase found in Schizochytrium, a thraustochytrid that has been developed as a commercial source for DHA-enriched biomass and oil. Data from in vitro activity assays indicate that the PUFAs are released from the enzyme as free fatty acids (FFAs). Addition of ATP and Mg2+ to in vitro assays facilitates appearance of radiolabel from 14C-malonyl-CoA in a triacylglycerol fraction, suggesting the involvement of acyl-CoA synthetases (ACS). Furthermore, addition of triascin C, an inhibitor of ACSs, to the assays blocks this conversion. When the Schizochytrium PUFA synthase is expressed in Escherichia coli, the products of the enzyme accumulate as FFAs, suggesting that the thioesterase activity required for fatty acid release is an integral part of the PUFA synthase.  相似文献   

7.
Because of its local commercial value, the proximate nutritional composition, fatty acid composition, cholesterol and fat‐soluble vitamins of spiny eel (Mastacembelus simack Walbaum, 1792) were determined in 20 specimens caught in Keban Dam Lake, Elaz??, Turkey in September 2009. Moisture, protein, lipid, ash and cholesterol contents of the spiny eel were 75.9, 17.1, 10.9, 1.0% and 52.6 mg per 100 g, respectively. Fatty acid composition showed that total polyunsaturated fatty acids (PUFA) were the highest (37.1%), followed by monounsaturated fatty acids (MUFA, 35.5%) and saturated fatty acids (SFA, 27.4%). The relation between PUFA and SFA (1.35) was comparable to that of some fish species, and PUFA : MUFA : SFA ratio (1.35 : 1.29 : 1) was very close to that recommended by nutritionists. Among the vitamins (A, D, E and K) analyzed, the vitamin E content was highest followed by D, K and A. In conclusion, M. simack is rich in proteins, unsaturated fatty acids and vitamins and low in cholesterol, with a reasonable PUFA : SFA and PUFA : MUFA : SFA ratio as recommended by nutritionists. M. simack can therefore be recommended for human consumption as a good source of nutrition.  相似文献   

8.
The Pseudomonas aeruginosa fabA and fabB genes, encoding beta-hydroxyacyl-acyl carrier protein dehydratase and beta-ketoacyl-acyl carrier protein synthase I, respectively, were cloned, sequenced, and expressed in Escherichia coli. Northern analysis demonstrated that fabA and fabB are cotranscribed and most probably form a fabAB operon. The FabA and FabB proteins were similar in size and amino acid composition to their counterparts from Escherichia coli and to the putative homologs from Haemophilus influenzae. Chromosomal fabA and fabB mutants were isolated; the mutants were auxotrophic for unsaturated fatty acids. A temperature-sensitive fabA mutant was obtained by site-directed mutagenesis of a single base that induced a G101D change; this mutant grew normally at 30 degrees C but not at 42 degrees C, unless the growth medium was supplemented with oleate. By physical and genetic mapping, the fabAB genes were localized between 3.45 and 3.6 Mbp on the 5.9-Mbp chromosome, which corresponds to the 58- to 59.5-min region of the genetic map.  相似文献   

9.
The anaerobic unsaturated fatty acid synthetic pathway of Escherichia coli requires two specialized proteins, FabA and FabB. However, the fabA and fabB genes are found only in the Gram-negative alpha- and gamma-proteobacteria, and thus other anaerobic bacteria must synthesize these acids using different enzymes. We report that the Gram-positive bacterium Enterococcus faecalis encodes a protein, annotated as FabZ1, that functionally replaces the E. coli FabA protein, although the sequence of this protein aligns much more closely with E. coli FabZ, a protein that plays no specific role in unsaturated fatty acid synthesis. Therefore E. faecalis FabZ1 is a bifunctional dehydratase/isomerase, an enzyme activity heretofore confined to a group of Gram-negative bacteria. The FabZ2 protein is unable to replace the function of E. coli FabZ, although FabZ2, a second E. faecalis FabZ homologue, has this ability. Moreover, an E. faecalis FabF homologue (FabF1) was found to replace the function of E. coli FabB, whereas a second FabF homologue was inactive. From these data it is clear that bacterial fatty acid biosynthetic pathways cannot be deduced solely by sequence comparisons.  相似文献   

10.
The genome of Lactococcus lactis encodes a single long chain 3-ketoacyl-acyl carrier protein synthase. This is in contrast to its close relative, Enterococcus faecalis, and to Escherichia coli, both of which have two such enzymes. In E. faecalis and E. coli, one of the two long chain synthases (FabO and FabB, respectively) has a role in unsaturated fatty acid synthesis that cannot be satisfied by FabF, the other long chain synthase. Since L. lactis has only a single long chain 3-ketoacyl-acyl carrier protein synthase (annotated as FabF), it seemed likely that this enzyme must function both in unsaturated fatty acid synthesis and in elongation of short chain acyl carrier protein substrates to the C18 fatty acids found in the cellular phospholipids. We report that this is the case. Expression of L. lactis FabF can functionally replace both FabB and FabF in E. coli, although it does not restore thermal regulation of phospholipid fatty acid composition to E. coli fabF mutant strains. The lack of thermal regulation was predictable because wild-type L. lactis was found not to show any significant change in fatty acid composition with growth temperature. We also report that overproduction of L. lactis FabF allows growth of an L. lactis mutant strain that lacks the FabH short chain 3-ketoacyl-acyl carrier protein synthase. The strain tested was a derivative (called the ∆fabH bypass strain) of the original fabH deletion strain that had acquired the ability to grow when supplemented with octanoate. Upon introduction of a FabF overexpression plasmid into this strain, growth proceeded normally in the absence of fatty acid supplementation. Moreover, this strain had a normal rate of fatty acid synthesis and a normal fatty acid composition. Both the ∆fabH bypass strain that overproduced FabF and the wild type strain incorporated much less exogenous octanoate into long chain phospholipid fatty acids than did the ∆fabH bypass strain. Incorporation of octanoate and decanoate labeled with deuterium showed that these acids were incorporated intact as the distal methyl and methylene groups of the long chain fatty acids.  相似文献   

11.

Background  

The original anaerobic unsaturated fatty acid biosynthesis pathway proposed by Goldfine and Bloch was based on in vivo labeling studies in Clostridium butyricum ATCC 6015 (now C. beijerinckii) but to date no dedicated unsaturated fatty acid biosynthetic enzyme has been identified in Clostridia. C. acetobutylicium synthesizes the same species of unsaturated fatty acids as E. coli, but lacks all of the known unsaturated fatty acid synthetic genes identified in E. coli and other bacteria. A possible explanation was that two enzymes of saturated fatty acid synthesis of C. acetobutylicium, FabZ and FabF might also function in the unsaturated arm of the pathway (a FabZ homologue is known to be an unsaturated fatty acid synthetic enzyme in enterococci).  相似文献   

12.
Arachidonic acid (ARA) is a polyunsaturated fatty acid (PUFA) and an essential component of membrane lipids. However, the PUFA synthase required for ARA biosynthesis has not been identified in any organism. To identify the PUFA synthase producing ARA, we determined the draft genome sequence of the marine bacterium Aureispira marina, which produces a high level of ARA, and found a gene cluster encoding a putative PUFA synthase for ARA production. Expression of the gene cluster in Escherichia coli induced production of ARA, demonstrating that the gene cluster encodes a PUFA synthase required for ARA biosynthesis.  相似文献   

13.
Transposon Tn5 mutagenesis was used to generate random mutations in Shewanella baltica MAC1, a polyunsaturated fatty acid (PUFA)-producing bacterium. Three mutants produced 3–5 times more eicosapentaenoic acid (EPA 20:5 n−3) compared to the wild type at 10°C. One of the mutants produced 0.3 mg EPA g−1 when grown at high temperature (30°C). Moreover, 2 mg docosahexaenoic acid (DHA 22:6 n−3) g−1 was produced by S. baltica mutants at 4°C. Sequencing of insertion mutation(s) showed 96% homology to trimethylamine N-oxide (TMAO) reductase gene and 85% homology to rRNA operons of E. coli. Tn5 transposon mutagenesis therefore is a suitable technique to increase PUFA formation in bacteria.  相似文献   

14.
Four samples of freshwater alga Sirodotia (class Rhodophyceae) collected from two distinct streams in the Mahabaleshwar, Satara district (1,732 m a.s.l.) of the Western Ghats of Maharashtra (India) were analysed for their fatty acid content. The presence of 32 fatty acids was revealed, of which 13 were saturated (SFA), 8 were monounsaturated (MUFA) and 11 were polyunsaturated (PUFA) fatty acids. The major finding was the presence of three pharmaceutically and neutraceutically important PUFAs: arachidonic acid (AA), eicosapentanoeic acid (EPA), and docosahexanoiec acid (DHA). The major fatty acids identified were palmitic (16:0), cis-11,14 icodienoic (20:2), behenic (22:0), cis-8,11,14 eicosatrienoic(20:3n6), cis-4,7,10,13,16,19 docosahexanoeic (22:6n3), cis-13,16 docosadienoic (22:2), erucic (22:1n9), -5,8,11,14,17 eicosapentaenoic (20:5n3), trichosonoic (23:0), nervonic (24:0), arachidonic (20:4n6), cis-10 pentadecanoic (15:1), cis-11,14,17 eicosatrienoic (20:3n3), and myristic acid (14:0). The total PUFA contents ranged from 31.45 to 40.37%. The fatty acids were characterised by the relatively high abundance of PUFAs, while C20 unsaturated acids were appreciably more abundant than C18 unsaturated acids. This is the first report on fatty acid profiles of the genus Sirodotia.  相似文献   

15.
In the current study, the effect of frozen storage at ?18°C was evaluated on fatty acid composition of different body parts (liver, muscle tissue, and viscera) of narrow‐barred Spanish mackerel (Scomberomorus commerson, Lacépède, 1800), longtail tuna (Thunnus tonggol, Bleeker, 1851), kawakawa (Euthynnus affinis, Cantor, 1849), king mackerel (Scomberomorus guttatus, Bloch & Schneider, 1801), and rainbow sardine (Dussumieria acuta, Valenciennes, 1847) caught in the Persian Gulf. Changes in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid plus docosahexaenoic acid/palmitic acid (EPA+DHA/C16), ω3 PUFA/ω6 PUFA (ω3/ω6), and polyunsaturated fatty acids/saturated fatty acids (PUFA/SFA) were investigated during a 6‐month period. A decrease in unsaturated fatty acids, particularly PUFAs (60–100%) as well as ω3/ω6, EPA+DHA/C16 (polyene index) and PUFA/SFA ratios, indicated a decrease in the nutritional values of the samples.  相似文献   

16.
Tuatara (Sphenodon) are rare reptiles endemic to New Zealand. Wild tuatara on Stephens Island (study population) prey on insects as well as the eggs and chicks of a small nesting seabird, the fairy prion (Pachyptila turtur). Tuatara in captivity (zoos) are fed diets containing different insects and lacking seabirds. We compared the fatty acid composition of major dietary items and plasma of wild and captive tuatara. Fairy prions (eaten by tuatara in the wild) were rich in C20 and C22 polyunsaturated fatty acids (PUFA), especially the n-3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). In contrast, items from the diet of captive tuatara contained no C20 and C22 PUFA and were higher in medium-chain and less unsaturated fatty acids. Plasma from wild tuatara was higher in n-3 PUFA [including alpha-linoleic acid (C18:3n-3), EPA and DHA], and generally lower in oleic acid (C18:1) and palmitic acid (C16:0), than plasma from captive tuatara in the various fractions (phospholipid, triacylglycerol, cholesterol ester and free fatty acids). Plasma from wild adult tuatara showed strong seasonal variation in fatty acid composition, reflecting seasonal consumption of fairy prions. Differences in the composition of diets and plasma between wild and captive tuatara may have consequences for growth and reproduction in captivity. Accepted: 3 August 1998  相似文献   

17.
Diets rich in unsaturated and polyunsaturated fatty acids have a positive effect on mammalian torpor, whereas diets rich in saturated fatty acids have a negative effect. To determine whether the number of double bonds in dietary fatty acids are responsible for these alterations in torpor patterns, we investigated the effect of adding to the normal diet 5% pure fatty acids of identical chain length (C18) but a different number of double bonds (0, 1, or 2) on the pattern of hibernation of the yellow-pine chipmunk, Eutamias amoenus. The response of torpor bouts to a lowering of air temperature and the mean duration of torpor bouts at an air temperature of 0.5°C (stearic acid C18:0, 4.5±0.8 days, oleic acid C18:1, 8.6±0.5 days; linoleic acid C18:2, 8.5±0.7 days) differed among animals that were maintained on the three experimental diets. The mean minimum body temperatures (C18:0, +2.3±0.3°C; C18:1, +0.3±0.2°C; C18:2,-0.2±0.2°C), which torpid individuals defended by an increase in metabolic rate, and the metabolic rate of torpid animals also differed among diet groups. Moreover, diet-induced differences were observed in the composition of total lipid fatty acids from depot fat and the phospholipid fatty acids of cardiac mitochondria. For depot fat 7 of 13 and for heart mitochondria 7 of 14 of the identified fatty acids differed significantly among the three diet groups. Significant differences among diet groups were also observed for the sum of saturated, unsaturated and polyunsaturated fatty acids. These diet-induced alterations of body fatty acids were correlated with some of the diet-induced differences in variables of torpor. The results suggest that the degree of unsaturation of dietary fatty acids influences the composition of tissues and membranes which in turn may influence torpor patterns and thus survival of hibernation.Abbreviations bm body mass - T a air temperature - T b body temperature - FA fatty acid - MR metabolic rate - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - VO2 rate of oxygen consumption - SFA saturated fatty acids - UFA unsaturated fatty acids - UI unsaturation index - SNK Student-Newman-Keuls test  相似文献   

18.
The antibiotic, thiolactomycin, is known to selectively inhibit the Type II straight-chain fatty acid synthase (monofunctional enzyme system, e.g. Escherichia coli enzyme) but not Type I straight-chain fatty acid synthase (multifunctional enzyme system, e.g. Saccharomyces cerevisiae enzyme). We have studied the effect of thiolactomycin on the branched-chain fatty acid synthases from Bacillus subtilis, Bacillus cereus, and Bacillus insolitus. Fatty acid synthase from all three Bacilli was not inhibited or only slightly inhibited by thiolactomycin. E. coli synthase, as expected, was strongly inhibited by thiolactomycin. Branched-chain fatty acid synthase from Bacillus species is a monofunctional enzyme system but, unlike Type II E. coli synthase, it is largely insensitive to thiolactomycin.  相似文献   

19.
Summary The minimum requirement for unsaturated fatty acids was investigated inE. coli using a mutant impaired in the synthesis of vaccenic acid. Exogenously supplied palmitic acid was incorporated by this mutant which led to a reduction in the proportion of cellular unsaturated fatty acids. Growth was impaired as the level of saturated fatty acids approached 76% at 37°C and 60% at 30°C. The basis of this growth inhibition was investigated. Most transport systems and enzymes examined remained active in palmitate-grown cells although the specific activities of glutamate uptake and succinic dehydrogenase were depressed 50%. Fluorescent probes of membrane organization indicated that fluidity decreased with palmitate incorportation. Temperature scans with parinaric acid indicated that rigid lipid domains exist in palmitategrown cells at their respective growth temperature. Freeze-fracture electron microscopy confirmed the presence of phase separations (particle-free areas) in palmitate-grown cells held at their growth temperature prior to quenching. The extent of this separation into particle-free and particle-enriched domains was equivalent to that induced by a shift to 0°C in control cells. The incorporation of palmitate increased nucleotide leakage over threefold. The cytoplasmic enzyme -galactosidase was released into the surrounding medium as the concentration of unsaturated fatty acid approached the minimum for a particular growth temperature. Lysis was observed as a decrease in turbidity when cells which had been grown with palmitate were shifted to a lower growth temperature. From these results we propose that leakage and partial lysis are the major factors contributing to the apparent decrease in growth rate caused by the excessive incorporation of palmitate. Further, we propose that membrane integrity may determine the minimum requirement for unsaturated fatty acids inE. coli rather than a specific effect on membrane transport and/or membrane-bound enzymes.  相似文献   

20.
The composition of tissue and membrane fatty acids in ectothermic vertebrates is influenced by both temperature acclimation and diets. If such change in body lipid composition and thermal physiology were linked, a diet-induced change in body lipid composition should result in a change in thermal physiology. We therefore investigated whether the selected body temperature of the agamid lizardAmphibolurus nuchalis (body mass 20 g) is influenced by the lipid composition of dietary fatty acids and whether diet-induced changes in thermal physiology are correlated with changes in body lipid composition. The selected body temperature in two groups of lizards was indistinguishable before dietary treatments. The selected body temperature in lizards after 3 weeks on a diet rich in saturated fatty acids rose by 2.1 °C (photophase) and 3.3 °C (scotophase), whereas the body temperature of lizards on a diet rich in unsaturated fatty acids fell by 1.5 °C (photophase) and 2.0 °C (scotophase). Significant diet-induced differences were observed in the fatty acid composition of depot fat, liver and muscle. These observations suggest that dietary lipids may influence selection of body temperature in ectotherms via alterations of body lipid composition.Abbreviations bm body mass - FA fatty acid(s) - MUFA monounsaturated fatty acids - PUFA polyunsaturated fatty acids - SFA saturated fatty acids - T a air temperature - T b body temperature - UFA unsaturated fatty acids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号