首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The growing interest in broadleaf timber plantations in the Mediterranean area has promoted several studies focusing on the identification and characterization of variability sources in main timber-producing species. J. regia is one of these species, well-adapted to this area, but with freezing, damages registrations. Breeding focused on productive traits should include knowledge of adaptation, required to obtain a good selection capable of producing a suitable turnover in timber plantations. In this study, the features evaluated were autumn and winter frost hardiness and some vegetative traits on 22 half-sib J. regia progenies. Budsticks were exposed to sub-zero temperatures in a controlled chamber and using measurements of relative electrolyte content, the LT50 values (°C) were calculated by each individual. The study was carried out on seven-year-old progenies. The familiar heritability of autumn frost hardiness was 0.68, and on winter, it was 0.77. The autumn frost behaviour correlated genetically with the length of the growing season (0.574 ± 0.351), and both autumn and winter frost hardiness correlated inversely with secondary annual growth measured at breast height (?0.654 ± 0.259 and ?0.740 ± 0.227, respectively). These results pointed that growth could therefore be improved without increasing the frost vulnerability. This should be important for growers, particularly under climate change conditions.  相似文献   

2.
The suitability of an electrical conductivity assay of leaf material for determining frost hardiness in winter cauliflower was established. The assay was used to monitor the changes in hardiness of field-grown plants during two seasons at two sites. Levels of frost hardiness were related to mean air temperature over the 7-day period prior to sampling (r = 0.6008, P< 0.001). There was no clear disjunction of any temperature to indicate a threshold temperature of hardening. Dehardening occurred in spring and during mild spells in winter. In the mild regions where this crop is grown commercially it is likely that plants are not fully hardened for much of the winter. This may facilitate curd growth but may put the crop at risk from frost damage.  相似文献   

3.
The present work comprises a study of 6 wheat varieties of various degrees of cold resistance. They are: 2 winter varieties, Nungta 183 and Huapei 187; 2 spring varieties, Nanta 2419 and Piyü; and 2 intermediate varieties (according to their winter hardiness), Pima No. 1 and Pingyüan 50. All these varieties were cultivated under the same natural conditions. Cytological changes of each of the varieties were studied comparatively at different stages of the overwintering period. In addition, certain morphological and physiological features of the above mentioned varieties were also studied. With the temperature gradually falling in autumn, the rate of the cell divisions and the physiological activities of the nucleoli of the winter varieties decreased, the growth of the plants and the development of the apical cones were suppressed, and so more storage materials were left. The less hardy and non-hardy varieties, on the other hand, retained their cytophysiological activities and high growing rate, so that the stored materials were much less than those left in the winter varieties. However the non-resistant varieties could not withstand the winter frost and survived no more. The plants of the less hardy varieties were partly killed by winter frost. When the temperature dropped further in winter, plasmolysis gradually appeared in the cells of the tillering nodes of the cold resistant wheat plants, and it disappeared with the return of the warmer weather. The degrees of the plasmolysis in different varieties were found proportional to their cold hardiness, and no plasrnolysis was observed in the spring wheat. Thus a correlation apparently exists between the plasmolysis and the cold resistance in wheat. In winter, the vacuoles of the young leaf cells and of the cells of the primary meristematic tissues of the apical cones became smaller and smaller, while a dense reticular structure appeared in the cytoplasm. In spring, the vacuoles restored, and the reticular structure disappeared. It seems that the occurrence of the reticular structure in the winter season is also closely correlated with the cold resistance of the wheat plants. It was found that the nuclei and the chloroplasts of the winter varieties were more resistant to cold than those of the less resistant and non-resistant varieties. The stability of these structures increased in hardened condition. Morphological changes of the chloroplasts of the young leaf cells occured from autumn to winter, they were transformed from polymorphic to uniformly globular. The chloroplasts of some cells were balling together, however, they actually retained their individualities. The chondriosomes increased in size and quantity during the hardened period. They became short and thick, some were in globular form or they clumped together in severe winter, and gradually restored when warmer weather arrived in the spring. The correlations of the mitosis, the plasmolysis, the appearance of the reticular structure in the cytoplasm and the stability of the nuclei with the cold resistance of the wheat were discussed.  相似文献   

4.
Miniswards of white clover (Trifolium repensL.) varieties Menna,Huia, AberCrest and AberHerald, with contrasting winter hardiness,were established from cloned material in flat boxes. The miniswardswere placed in an unheated glasshouse with natural lightingfor the winter of 1995/96. During this time there were severalperiods of cold weather. The plants experienced temperaturesat least as severe as those experienced by unprotected plantsduring preceding mild winters. Growth measurements carried outmonthly suggested the cloned genotypes were representative ofthe varieties from which they were derived. Growth continuedthroughout the experiment, particularly when expressed as appearanceof new internodes. During the coldest weather these internodeswere short, and the amount of tissue produced was small. Starchconcentration showed a complex pattern of changes during thewinter. Older internodes were the major site of starch storagein the autumn; starch was lost from these internodes duringthe winter and early spring. Starch synthesis also occurred,even during the coldest periods. Starch accumulated in all newstolon tissue. There were significant differences between varieties.AberCrest and AberHerald retained higher concentrations of starchin older stolon tissue, synthesized higher concentrations ofstarch in young tissue and retained these for longer. Therewere few differences in soluble sugar concentrations betweenvarieties, but there were significant changes during the winter.In mid-winter, sucrose and pinitol were at their highest concentrations,whereas reducing sugars were at their lowest concentrations.This study further supports the important role of starch reservesin supporting winter survival.Copyright 1998 Annals of BotanyCompany Trifolium repens; white clover; winter hardiness; starch; sugar; pinitol.  相似文献   

5.
Netsvetaev VP  Netsvetaeva OV 《Genetika》2004,40(11):1502-1508
A set of cereal crops and differentiating cultivars was shown to be of utility for identifying the major abiotic factors that limit the survival of winter crops in the cold season of a particular year. With this approach, the season was identified (1997-1998, Belgorod) when the survival of cereals depended on the tolerance to anaerobiosis rather than on the frost resistance. Differentiation of common wheat cultivars with respect to this property was attributed to a locus designated Win1 (Winter hardiness 1) and localized 3.2-5.8% recombination away from the B1 (awnlessness) gene. Winter barley (cultivar Odesskii 165) displayed the highest tolerance to anaerobiosis in the cold season; low and intermediate tolerance was established for winter durum wheat (cultivar Alyi Parus) and winter common wheat, respectively. Frost resistance and winter hardiness type 1 proved to be determined by different genetic systems, which showed no statistical association. Correlation analysis revealed significant positive associations of frost resistance in the field (1996-1997, Belgorod) with productivity, sedimentation index, plant height, and vegetation period in wheat. Statistical analysis associated frost resistance with gliadin-coding alleles of homeologous chromosomes 1 and 6 of the A, B, and D wheat genomes.  相似文献   

6.
Seedlings of five mountain birch populations (Betula pubescens Ehrh. ssp. czerepanovii) from Fennoscandia and Iceland were raised and grown at natural daylengths at Tromsø, Norway (69°N) and different temperatures during late summer and fall season, followed by winter temperature treatment at ambient and +4 °C above ambient temperatures at Bergen, Norway (60°N). The experiment took place during two seasons (2000/01 and 2001/02). The following summer shoot and biomass growth were reduced as a result of winter warming and subsequent premature dehardening in early flushing provenances and treatments. Biomass increased in plants grown at low hardening temperature when compared with high temperature treatment. As a conclusion, increased winter temperatures would tend to increase the risk of spring frost damage and reduce growth in birch seedlings, because the differences between the frost hardening and ambient temperatures are decreasing, and because the time from budbreak to dehardening is shortened. The results are discussed in relation to simultaneous experiments with frost hardiness in the same populations and treatments.  相似文献   

7.
The data on inheritance of frost resistance and winter hardiness of bread wheat lines obtained as a result of distant hybridization of wheat-rye and wheat-elymus amphiploids with durum and bread wheat were presented. It was shown that selection of the donors of valuable traits is sensible to make in later progenies of hybrids (F6-F7). So, it is possible to obtain the new initial breeding material for winter bread wheat selection with high frost tolerance, winter hardiness and early maturity. Hypotheses explaining the high frost resistance of hybrids are presented. The crosses of the octoploid amphiploids with durum wheat are more preferable for the alien traits introgression into wheat than the crosses with bread wheat.  相似文献   

8.
A set of cereal crops and differentiating cultivars was shown to be of utility for identifying the major abiotic factors that limit the survival of winter crops in the cold season of a particular year. With this approach, the season was identified (1997–1998, Belgorod) when the survival of cereals depended on the tolerance to anaerobiosis rather than on the frost resistance. Differentiation of common wheat cultivars with respect to this property was attributed to a locus designated Win1 (Winter hardiness 1) and localized 3.2–5.8% recombination away from the B1 (awnlessness 1) gene. Winter barley (cultivar Odesskii 165) displayed the highest tolerance to anaerobiosis in the cold season; low and intermediate tolerance was established for winter durum wheat (cultivar Alyi Parus) and winter common wheat, respectively. Frost resistance and winter hardiness type 1 proved to be determined by different genetic systems, which showed no statistical association. Correlation analysis revealed significant positive associations of frost resistance in the field (1996–1997, Belgorod) with productivity, sedimentation index (Zeleny test), plant height, and vegetation period in wheat. Statistical analysis associated frost resistance with gliadin-coding alleles of homeologous chromosomes 1 and 6 of the A, B, and D wheat genomes.  相似文献   

9.
Chen PM  Li PH 《Plant physiology》1977,59(2):240-243
A decrease of protein, RNAs, and starch, and an increase of sugar were observed in 3-day water-stressed red osier dogwood plants (Cornus stolonifera Michx.) when the frost hardiness increased from −3 to −6 C. As the frost hardiness increased to −11 C after 7 days of treatment, the starch continuously decreased, however, the proteins and RNAs increased with a continuous increase of sugar. Further water stress treatment had little effect on the changes of these chemicals. Control plants in short days showed similar gradual biochemical changes in patterns. From the results of frost hardiness increases, the pattern of biochemical changes, and the mechanism of the increased freezing resistance, it appears that the water stress and short days accomplished essentially the same physiological end(s) in inducing frost hardiness in red-osier dogwood.  相似文献   

10.
Adaptive traits in Picea abies (Norway spruce) progenies are influenced by the maternal temperatures during seed production. Here, we have extended these studies by testing the effects of maternal photoperiod and temperature on phenology and frost hardiness on progenies. Using eight phytotron rooms, seeds from three unrelated crosses were made in an environmental 2 x 2 factorial combination of long and short days and high and low temperatures. The progenies were then forced to cease growth rapidly at the end of the first growing season. An interactive memory effect was expressed the second growth season. Progenies from high temperature and short days, and from low temperatures and long days, started growth later in spring, ceased shoot growth later in summer, grew taller and were less frost hardy in the autumn than their full siblings from low temperatures and short days, and from high temperatures and long days. Norway spruce has developed a memory mechanism, regulating adaptive plasticity by photoperiod and temperature, which could counteract harmful effects of a rapidly changing climate.  相似文献   

11.
Chen PM  Li PH  Burke MJ 《Plant physiology》1977,59(2):236-239
Water supply and day length were varied in cold hardiness studies of red osier dogwood plants (Cornus stolonifera Michx.). The frost killing temperature, the content and freezing of stem cortical tissue water along with soil moisture content and tension were evaluated. Seven days of water stress in long and short day photoperiod regimes caused a rapid decrease in soil moisture content and plant water potential. During the same period, the frost hardiness increased from −3 to −11 C. Further water stress treatment had little effect. Control plants in short days showed only a gradual decrease in plant water potential and only gradually increased in frost hardiness while control plants in long days were unchanged. Freezing studies using nuclear magnetic resonance showed that increased hardiness in water-stressed plants resulted from both an increased tolerance of freezing and an increased avoidance of freezing, the latter resulting from higher solute concentration in the tissue solutions. The short day controls also showed similar changes; however, the changes were smaller over the 21 days of the study.  相似文献   

12.
The effect of different growth temperatures, of transfer between them, and of changes in outside temperature on frost hardiness and ATPase activity of Scotch pines (Pinus silvestris L.) were studied. Plants which had been grown in the greenhouse and transported to outside “remembered” something of their earlier growing circumstances during a long period. They differed from the plants continuously grown outside in the level of hardiness, although changes in temperature caused similar fluctuations in the hardiness of both groups. It is evident that two mechanisms are present, the one causing a long term determination of the level of frost hardiness obtainable, the other causing a short term adaption. The heavy particle ATPase activity as investigated below 20°C grouped itself according to the main temperature groups of the experiment. Above 30°C, the pretreatments had given rise to differences within the temperature groups. The level of the ATPase activity increased as the growing season came closer.  相似文献   

13.
Olive growth and productivity are limited by low temperatures mainly during winter, but sometimes also in spring and fall. The most effective way to avoid these damages in areas subjected to these climatic conditions is to select least susceptible varieties, but the choice of the right method to determine cold hardiness is extremely difficult. The aims of the work were (1) to assess LT50 (lethal temperature at which 50% of damage in plants subjected to low temperatures occurs) of some olive varieties in two seasons (summer and winter) and (2) to assess the reliability of different methods to evaluate cold hardiness. LT50 was determined on 21 different olive (Olea europaea L.) Italian varieties by leaf and shoot electrolyte leakage, shoot impedance spectroscopy and leaf color determination of fractal spectrum. All the experiments were conducted on non-acclimated and cold-acclimated plants. Our results showed that all the three methods were able to detect damages on olive plants after exposure to low temperatures, with leaves appearing more sensitive to cold stress than shoots. Among these methods, fractal analysis could be very useful in assessing cold hardiness of plants on the basis of visible injury, without sophisticated or expensive instruments and in a reliable and cost-effective way, using only a scanning device, a personal computer and dedicated freeware software.  相似文献   

14.
15.
We examined the carry-over effects of ozone (O3) and/or water stress on leaf phenological characteristics and bud frost hardiness of Fagus crenata seedlings. Three-year-old seedlings were exposed to charcoal-filtered air or 60 nl l–1 O3, 7 h a day, from May to October 1999 in naturally-lit growth chambers. Half of the seedlings in each gas treatment received 250 ml of water at 3-day intervals (well-watered treatment), while the rest received 175 ml of water at the same intervals (water-stressed treatment). All the seedlings were moved from the growth chambers to an experimental field on October 1999, and grown until April 2000 under field conditions. The exposure to O3 during the growing season induced early leaf fall and reduction in leaf non-structural carbohydrates concentrations in the early autumn, as well as resulting in late bud break and reduction in the number of leaves per bud in the following spring. However, O3 did not affect bud frost hardiness in the following winter. On the contrary, water stress did not affect leaf phenological characteristics, leaf and bud non-structural carbohydrates concentrations and bud frost hardiness. There were no significant synergistic or antagonistic effects of O3 and water stress on leaf phenological characteristics, concentrations of leaf and bud non-structural carbohydrates and bud frost hardiness of the seedlings. These results show that the carry-over effects of O3 can be found on the phenological characteristics and leaf non-structural carbohydrates concentrations, although there are almost no carry-over effects of water stress on phenological characteristics and winter hardiness of the seedlings.  相似文献   

16.
Triazole and conventional growth regulators were tested for their ability to extend cold hardiness and improve the winter survival of winter rape (Brassica napus L.). Winter rape plants were grown in the field (Ottawa 45°23 N) and in growth cabinets. Plant growth regulators (PGRs) were applied during the early vegetative stage and the plants were allowed to cold harden. Cold-hardened plants from the field and cabinet were subjected to freezing and ice encasement tests in the laboratory. Some of the triazole PGRs reduced plant size by limiting cell expansion and increasing cell numbers. While cold hardiness and ice encasement tolerance were increased by some growth regulators, these effects were not consistent with time nor were they reflected in increased winter survival. Natural cold hardening may have eclipsed the PGR-induced hardening.PGR contribution number 1381.  相似文献   

17.
Recent studies (Rapacz 1999) have shown that cultivars of spring-type oilseed rape are able to cold-acclimate to the level comparable with winter cultivars, but only after prehardening which results both in the increase of photosynthetic activity and in growth cessation. It is commonly known that under field conditions spring-type cultivars could not survive winter. Present studies were undertaken to explain the reasons for low winter hardiness of spring type rape plants. Six cultivars of spring and two of winter rape were sown in the open-air vegetation room at the end of August. The obtained results indicate that the degree of frost damage in spring-type plants increased in the course of winter and this increase was parallel to elongation of generative shoots observed after periods of warming. Each spring cultivar was completely killed by frost just after its generative shoot reached 15–20 cm, irrespective of its frost resistance level, determined previously under laboratory conditions. In the case of winter cultivars survival rate was consistent with laboratory-estimated frost resistance. It is suggested that spring rape could not survive winter because of its limited ability to prevent shoot elongation during winter at temperatures slightly above 0 °C. It was also found that less efficient photosynthetic electron transport in autumn was observed in these spring cultivars in which the elongation of generative shoots was observed already during the first warm break in winter.  相似文献   

18.
Plants of berseem clover (Trifolium alexandrinum L.) cv. Taborwere raised under conditions inhibiting the acquisition of coldhardiness (non-hardened) or inducing cold hardiness (hardened).All non-hardened plants developed an elongated shoot and exhibitedconsiderable frost sensitivity, as measured by the extent ofthe reduction in yield of variable chlorophyll fluorescenceafter exposure to sub-zero temperature. Hardened plants developeda shorter shoot, with fewer leaves and a greater percentageof dry matter in the root system. These parameters were associatedwith a marked increase in frost resistance. Exogenous applicationof ABA to plants effected similar morphological modificationsin both hardening and non-hardening temperature regimes; plantsdeveloped a shorter primary shoot axis and leaves exhibiteda marked increase in frost hardiness. In berseem clover ABAcan thus substitute, at least partially, for the low temperaturetreatment required to induce cold hardiness. Spraying plantsraised under hardening conditions with gibberellic acid reversedthe effects of the hardening treatment, since they developedan elongated shoot and exhibited frost sensitivity comparableto non-treated plants grown under non-hardening conditions.It is concluded that these endogenous hormones are directlyinvolved in triggering changes in morphogenesis which accompanyphysiological and metabolic events associated with the inductionof plant cold hardiness. Key words: Frost resistance, morphogenesis, abscisic acid, giberellic acid, Trifolium alexandrinum  相似文献   

19.
为了解自交对白菜型冬油菜后代生理生化特性及抗寒性的影响,以6份白菜型冬油菜为材料,研究了在越冬降温前与降温后,自交和开放授粉后代植株叶片生理生化指标及越冬率的变化。结果表明:(1)除MDA含量外,无论是降温前还是降温后,白菜型冬油菜自交后代植株叶片中的SOD、CAT、POD的活性以及可溶性蛋白和游离脯氨酸含量都较开放授粉表现出不同程度的降低,其幼苗越冬率也较开放授粉植株显著降低。(2)与降温前相比,降温后所有测定指标在两种授粉方式后代中都表现为上升的趋势,其中以CAT活性变化最为显著。研究认为,自交会使白菜型冬油菜后代植株叶片中保护酶活性及可溶性蛋白和游离脯氨酸含量明显降低,MDA含量升高,导致幼苗的越冬率显著下降,进而引起其植株抗寒性减弱。  相似文献   

20.
In mountain regions, topological differences on the microscale can strongly affect microclimate and may counteract the average effects of elevation, such as decreasing temperatures. While these interactions are well understood, their effect on plant adaptation is understudied. We investigated winter frost hardiness of Arabidopsis thaliana accessions originating from 13 sites along altitudinal gradients in the Southern Alps during three winters on an experimental field station on the Swabian Jura and compared levels of frost damage with the observed number of frost days and the lowest temperature in eight collection sites. We found that frost hardiness increased with elevation in a log‐linear fashion. This is consistent with adaptation to a higher frequency of frost conditions, but also indicates a decreasing rate of change in frost hardiness with increasing elevation. Moreover, the number of frost days measured with temperature loggers at the collection sites correlated much better with frost hardiness than the elevation of collection sites, suggesting that populations were adapted to their local microclimate. Notably, the variance in frost days across sites increased exponentially with elevation. Together, our results suggest that strong microclimate heterogeneity of high alpine environments can preserve functional genetic diversity among small populations. Synthesis: Here, we tested how plant populations differed in their adaptation to frost exposure along an elevation gradient and whether microsite temperatures improve the prediction of frost hardiness. We found that local temperatures, particularly the number of frost days, are a better predictor of the frost hardiness of plants than elevation. This reflects a substantial variance in frost frequency between sites at similar high elevations. We conclude that high mountain regions harbor microsites that differ in their local microclimate and thereby can preserve a high functional genetic diversity among them. Therefore, high mountain regions have the potential to function as a refugium in times of global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号