首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
1,2,5-Tri-O-acetyl-3,6-anhydro-3-thio-D-glucofuranose was synthesised starting from D-glucose and was used as a donor for the glycosidation of 4-cyano- and 4-nitrobenzenethiol. In the latter reaction, besides an anomeric mixture of the 4-nitrophenyl 2,5-di-O-acetyl-3,6-anhydro-1,3-dithio-D-glucofuranosides, the corresponding 2,6-anhydro-1,2-dithio-D-altrofuranosides were also obtained, formed via a rearrangement of the sugar moiety. A similar rearrangement could be observed during the hydrolysis of the glycosidic bond of methyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-alpha-D-glucopyranoside with aqueous trifluoroacetic acid, affording after acetylation besides 1-O-acetyl-3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-alpha-D-glucopyranose (32alpha), 1,1,5-tri-O-acetyl-3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-D-glucose, methyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-3-thio-beta-D-glucopyranoside and 1,5-di-O-acetyl-2,6-anhydro-3-O-(4-nitrobenzoyl)-2-thio-alpha-D-altrofuranose (40). Glycosidation of 4-cyanobenzethiol with 32alpha in the presence of trimethylsilyl triflate as promoter afforded 4-cyanophenyl 3,6-anhydro-2,4-di-O-(4-nitrobenzoyl)-1,3-dithio-beta-D-glucopyranoside as a minor component only, besides 4-cyanophenyl 3,6-anhydro-2-S-(4-cyanophenyl)-4-O-(4-nitrobenzoyl)-1,2,3-trithio-beta-D-glucopyranoside. When boron trifluoride etherate was used as promoter in the reaction of 32alpha with 4-cyano- and 4-nitrobenzenethiol, the corresponding beta-thioglycosides were obtained, while 40 gave under identical conditions the alpha anomers exclusively. All thioglycosides obtained after deacylation were submitted to biological evaluation. Among these glycosides, the 4-cyanophenyl 3,6-thioanhydro-1,3-dithio-D-glucofuranoside possessed the strongest oral antithrombotic effect.  相似文献   

2.
2,5-Anhydro-3,4-di-O-benzyl-D-mannitol was glycosylated using different donors such as tetra-O-acetyl-alpha-D-glucopyranosyl bromide in the presence of Hg(CN)(2), the corresponding beta-thiophenylglycoside in the presence of NIS and TfOH as well as the alpha- and beta-trichloroimidate with TMSOTf as promoter. The resulting mixtures were analyzed by HPLC and the following main components were isolated and characterized: 2,5-anhydro-3,4-di-O-benzyl-1-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-d-mannitol; 6-O-acetyl-2,5-anhydro-3,4-di-O-benzyl-1-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol; 2,5-anhydro-3,4-di-O-benzyl-1,6-bis-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol; 2,5-anhydro-3,4-di-O-benzyl-1-O-[-2-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-3,4,6-tri-O-acetyl-beta-D-glucopyranosyl]-6-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-D-mannitol and 2,5-anhydro-3,4-di-O-benzyl-1,6-bis-O-(3,4,6-tri-O-acetyl-1,2-O-ethylidene-2'-yl-alpha-D-glucopyranosyl)-D-mannitol. The latter compound representing a bis-orthoester might be a common intermediate in all the investigated reactions, as its rearrangement and/or decomposition can yield all of the isolated compounds.  相似文献   

3.
From 2-anisylideneamino-1,3,4-tri-O-acetyl-2,6-dideoxy-6-S-acetyl-6-thio-β-D-glucopyranose, three derivatives of 2-amino-2-deoxy-1,6-dithio-D-glucose were prepared, i.e., 2-anisylidene-amino-3,4-di-O-acetyl-1,2,6-trideoxy-1,6-di-S-acetyl-1,6-dithio-β-D-glucopyranose, 2-amino-3,4-di-O-acetyl-1,2,6-trideoxy-1,6-di-S-acetyl-1, 6-dithio-β-D-glucopyranose hydrochloride and 2-acet-amido-3,4-di-O-acetyl-1,2,6-trideoxy-1-mercapto-6-S-acetyl-6-thio-β-D-glucopyranose; and some of their properties were described.  相似文献   

4.
The synthesis of 2,5-anhydro-3-O-methylsulfonyl-6-thio-1,4-thioanhydro-D-galactitol (4; type A structure) and 2,5-anhydro-3,4-di-O-methylsulfonyl-1,6-thioanhydro-D-glucitol (10, type B structure), starting from 2,5-anhydro-1,6-dibromo-1,6-dideoxy-3,4-di-O-methylsulfonyl-D-glucitol (1) is described. The 4-O-methyl-sulfonyl group of 10 can be displaced by nucleophiles with retention of configuration. In this reaction, a cyclic sulfonium intermediate 21 is involved, which, depending on the nucleophilicity of the anion, leads to different ratios of type A and B compounds. Introduction of a three-membered ring into the 3,4-position of type B compounds yielded tricyclic derivatives of allitol.  相似文献   

5.
Starting from 1,2,4-tri-O-acetyl-3,6-anhydro-alpha-d-galactopyranose, 4-O-acetyl-3,6-anhydro-1,2-O-(1-cyanoethylidene)-alpha-d-galactopyranose (7) was synthesized by treatment with cyanotrimethylsilane. Additionally, 3,4-di-O-acetyl-1,2-O-(1-cyanoethylidene)-6-O-tosyl-alpha-d-galactopyranose was prepared from the corresponding bromide and both cyanoethylidene derivatives were used as donors in glycosylation reactions. The coupling with benzyl 2,4,6-tri-O-acetyl-3-O-trityl-beta-d-galactopyranoside provided exclusively the beta-linked disaccharides in approximately 30% yield. The more reactive methyl 2,3-O-isopropylidene-4-O-trityl-alpha-l-rhamnopyranoside gave with donors 3 and 7 the corresponding disaccharides in nearly 60% yield. Furthermore, the synthesis of 3,6-anhydro-4-O-trityl-1,2-O-[1-(endo-cyano)ethylidene]-alpha-d-galactopyranose, which can be used as a monomer for polycondensation reaction is described.  相似文献   

6.
A convenient method of synthesis of 1,6-anhydro-4-deoxy-2-O-tosyl-4-fluoro-beta-D-glucopyranose by fusion of 1,6;3,4-dianhydro-2-O-tosyl-beta-D-galactopyranose with 2,4,6-trimethylpyridinium fluoride was found. By successive action of ammonia, methyl trifluoroacetate, and acetic anhydride, the resulting compound was transformed into 1,6-anhydro-3-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-beta-D-glucopyranose, which was converted into 3,6-di-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-alpha-D-glucopyranosyl fluoride by the reaction with HF/Py. The resulting fluoride was further used as a glycosyl donor in the synthesis of methylumbelliferyl N-acetyl-4-deoxy-4-fluoro-beta-D-glucosaminide.  相似文献   

7.
1,6-Anhydro-3,4-O-isopropylidene-1-thio-D-mannitol was converted into its sulfoxide which after hydrolysis, acetylation and subsequent Pummerer rearrangement gave the penta-O-acetyl-1-thio-D-mannoseptanose anomers in excellent yield. This anomeric mixture was used as donor for the glycosylation of 4-nitro- and 4-cyanobenzenethiol in the presence of boron trifluoride etherate and trimethylsilyl triflate, respectively, to yield the corresponding thioseptanosides in high yield. The same strategy was applied for the synthesis of the corresponding L-idothioseptanosides using 1,6-anhydro-3,4-O-isopropylidene-1-thio-L-iditol as starting material. The penta-O-acetyl-D-glucothioseptanose donors could not be synthesised the same way, as the Pummerer reaction of the corresponding tetra-O-acetyl-1,6-thioanhydro-1-thio-D-glucitol sulfoxides led to an inseparable mixture of the corresponding L-gulo- and D-glucothioseptanose anomers. Therefore, D-glucose diethyl dithioacetal was converted via its 2,3,4,5-tetra-O-acetyl-6-S-acetyl derivative into an anomeric mixture of its 6-thio-septanose and -furanose peracetates which could be separated by column chromatography. Condensation of the 6-thio-glucoseptanose peracetates with 4-cyano- and 4-nitrobenezenethiol in the presence of boron trifluoride etherate afforded anomeric mixtures of the corresponding thioseptanosides. The D-manno-, L-ido- and D-glucothioseptanosides obtained after Zemplén deacetylation of these mixtures were tested for their oral antithrombotic activity.  相似文献   

8.
Treatment of 1,6:2,5-dianhydro-3,4-di-O-methanesulfonyl-1-thio-D-glucitol in methanol with sodium hydroxide afforded 1,6:2,5:3,4-trianhydro-1-thio-allitol, 1,4:2,5-dianhydro-6-methoxy-1-thio-D-galactitol, 1,6:2,5-dianhydro-4-O-methyl-1 -thio-D-glucitol, 1 ,6:2,5-dianhydro-3-O-methanesulfonyl-1 -thio-D-glucitol and 1 ,6:2,5-dianhydro-4-deoxy-1-thio-D-erythro-hex-3-ulose (14) in 5, 4, 28, 5.5 and 41% yield, respectively. Formation of these derivatives can be explained via a common sulfonium intermediate. Reduction of 14 with sodium borohydride and subsequent acetylation afforded 3-O-acetyl-1,6:2,5-dianhydro-4-deoxy-1-thio-D-xylo-hexitol, the absolute configuration of which was proved by X-ray crystallography. The 1,6:2,5-dianhydro-1-thio-D-hexitol derivatives in which the free OH groups were protected by acetylation, methylation or mesylation were converted by a Pummerer reaction of their sulfoxides into the corresponding 1-O-acetyl hexoseptanose derivatives which were used as donors for the glycosidation of 4-cyano- and 4-nitrobenzenethiol, respectively. The Pummerer reaction of 1,6:2,5-dianhydro-4-deoxy-3-O-methyl-1-thio-D-xylo-hexitol S-oxide gave, besides 1-O-acetyl-2,5-anhydro-3-deoxy-4-O-methyl-6-thio-alpha-L- (23) and 1-O-acetyl-2,5-anhydro-4-deoxy-3-O-methyl-6-thio-alpha-D-xylo-hexoseptanose (25), 1-O-acetyl-4-deoxy-2,6-thioanhydro-D-lyxo-hexopyranose, formed in a rearrangement reaction. The same rearrangement took place, when a mixture of 23 and 25 was used as donor in the glycosidation reaction with 4-cyanobenzenethiol, applying trimethylsilyl triflate as promoter. The oral antithrombotic activity of the obtained alpha-thioglycosides was determined in rats, using Pescador's model.  相似文献   

9.
Reaction of benzyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-6-O-mesyl-alpha-D-galactopyran oside with cesium floride gave benzyl 2-acetamido-3,6-anhydro-4-O-benzyl-2-deoxy-alpha-D-galactopyranoside instead of the desired 6-fluoro derivative. Acetonation of benzyl 2-acetamido-2-deoxy-6-O-mesyl-alpha-D-galactopyranoside gave the corresponding 3,4-O-isopropylidene derivative. The 6-O-mesyl group was displaced by fluorine with cesium fluoride in boiling 1,2-ethanediol, and hydrolysis and subsequent N-acetylation gave the target compound. In another procedure, treatment of 2-acetamido-1,3,4-tri-O-acetyl-2-deoxy-alpha-D-galactose with N-(diethylamino)sulfur trifluoride gave 2-acetamido-1,3,4-tri-O-acetyl-2,6-dideoxy-6-fluoro-D-galactose which, on acid hydrolysis followed by N-acetylation, gave 2-acetamido-2,6-dideoxy-6-fluoro-D-galactose.  相似文献   

10.
Nitrous acid deamination of 2-amino-1,6-anhydro-2-deoxy-β-D-glucopyranose (1) in the presence of weakly acidic, cation-exchange resin gave 1,6:2,3-dianhydro-β-D-mannopyranose (3) and 2,6-anhydro-D-mannose (6), characterized, respectively, as the 4-acetate of 3 and the per-O-acetylated reduction product of 6, namely 2,3,4,6- tetra-O-acetyl-1,5-anhydro-D-mannitol, obtained in the ratio of 7:13. Comparative deaminatior of the 4-O-benzyl derivative of 1 led to similar qualitative results. Deamination of 3-amino-1,6-anhydro-3-deoxy-β-D-glucopyranose gave 1,6:2,3- and 1,6:3,4-dianhydro-β-D-allopyranose (13 and 16), characterized as the corresponding acetates, obtained in the ratio of 31:69, as well as the corresponding p-toluenesulfonates. Deamination of 4-amino-1,6-anhydro-4-deoxy-β-D-glucopyranose and of its 2-O-benzyl derivative gave the corresponding 1,6:3,4-D-galacto dianhydrides as the only detectable products. 2,5-Anhydro-D-glucose, characterized as the 1,3,4,6-tetra-O- acetyl derivative of the corresponding anhydropolyol, was obtained in 39% yield from the same deamination reaction performed on 2-amino-1,6-anhydro-2-deoxy-β-D- mannopyranose (24). In 90% acetic acid, the nitrous acid deamination of 24, followed by per-O-acetylation, gave only 1,3-4-tri-O-acetyl-2,5-anhydro-α-D-glucoseptanose. In the case of 1,6-anhydro-3,4-dideoxy-3,4-epimino-β-D-altropyranose, only the corresponding glycosene was formed, namely, 1,6-anhydro-3,4-dideoxy-β-D-threo--hex-3-enopyranose.  相似文献   

11.
Glycosidation of 2,5-anhydro-1,6-di-O-benzoyl-D-mannitol with methyl(2,3,4-tri-O-acetyl-alpha-d-glucopyranosyl-1-O-trichloroacetimidate)uronate in the presence of trimethylsilyl triflate afforded the corresponding 3-O-beta-glycoside, which after deprotection was converted into its hexa-O-sulfate with DMF x SO3 to give after treatment with sodium acetate and subsequent saponification of the methyl ester with sodium hydroxide the hepta sodium salt of 2,5-anhydro-3-O-(beta-d-glucopyranosyl uronate)-D-mannitol hexa-O-sulfate. Glycosidation of the same acceptor with the alpha-thiophenylglycoside of methyl 2,4-di-O-acetyl-3-O-benzyl-L-idopyranosyl uronate in the presence of NIS/TfOH afforded the corresponding 3-O-alpha-glycoside in very low yield, therefore the alpha-thiophenylglycoside of 2-O-acetyl-2,4-O-benzylidene-3-O-benzyl-L-idopyranose was used as donor. The terminal hydroxymethyl group of the obtained disaccharide was subsequently oxidised with NaOCl/TEMPO and the obtained iduronic acid derivative was converted into the hepta sodium salt of 2,5-anhydro-3-O-(-alpha-L-idopyranosyluronate)-D-mannitol hexa-O-sulfonate with DMF x SO3 and subsequent treatment with sodium acetate.  相似文献   

12.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

13.
Reaction of 5,6-anhydro-1,2-O-isopropylidene-3-O-methanesulfonyl-3-L-idofuranose+ ++ with thioacetic acid in pyridine gave 6-S-acetyl-1,2-O-isopropylidene-3-O-methanesulfonyl-6-thio-3-L-idofur anose, which was deacetylated and the resultant thiol was converted into 1,2-O:5,6-O,S-diisopropylidene-3-O-methanesulfonyl-3-L-idofuran ose. Alkaline cleavage of the mesyl group gave 1,2-O: 5,6-O,S-diisopropylidene-3-L-idofuranose, which on treatment with hot dilute hydrochloric acid gave, after acetylation, 2,3,5-tri-O-acetyl-1,6-dideoxy-1,6-epithio-alpha-L-idofuranose+ ++ and not the expected idopyranose isomer. 1,2:3,5-Di-O-isopropylidene-6-O-toluene-p-sulfonyl-alpha-D-glucofuranose was converted into 6-S-acetyl-1,2:3,5-di-O-isopropylidene-6-thio-alpha-D-glucofuranose; conversion into the 6-thiol and isomerisation in acidified acetone gave 1,2-O:5,6-O,S-diisopropylidene-6-thio-alpha-D-glucofuranose. Acid treatment of this diacetal, or the isomeric 1,2:3,5-di-O-isopropylidene-6-thio-alpha-D-glucofuranose, followed by acetylation gave 2,3,5-tri-O-acetyl-1,6-dideoxy-1,6-epithio-beta-D-glucofuranose. Similar treatment of 1,2:3,4-di-O-isopropylidene-6-thio-alpha-D-galactopyranose gave 2,3,5-tri-O-acetyl-1,6-dideoxy-1,6-epithio-alpha-D-galactofuranose .  相似文献   

14.
Tri-O-acetyl-5-thio-D-ribopyranosyl bromide was converted into 3,4-di-O-benzoyl-1,5-anhydro-5-thio-D-erythro-pent-1-enitol (3,4-di-O-benzoyl-5-thio-D-ribal), the azidonitration of which afforded an unstable mixture of 2-azido-3,4-di-O-benzoyl-2-deoxy-1-O-nitro-5-thio-D-pentopyranoside++ + isomers. This was converted without separation into the corresponding 1-O-acetyl derivatives from which an alpha,beta anomeric mixture of the 1-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-5-thio-D-arabinopyranose+ ++ isomers could be isolated in high yield. Glycosidation of this mixture with 4-cyano- or 4-nitrobenzenethiol, using trimethylsilyl triflate or boron trifluoride etherate, respectively, as promoters gave the corresponding D anomers exclusively. Zemplén debenzoylation afforded 4-cyanophenyl as well as 4-nitrophenyl 2-azido-2-deoxy-1,5-dithio-beta-D-arabinopyranoside, respectively. When 1-O-acetyl-2-azido-3,4-di-O-benzoyl-2-deoxy-5-thio-D-lyxopyranose was used as glycosyl donor only the corresponding 1 anomers, i.e., 4-cyanophenyl as well as 4-nitrophenyl 2-azido-2-deoxy-1,5-dithio-beta-D-lyxopyranosides, could be isolated after Zemplén debenzoylation in high yield. All four 1,5-dithioglycosides possess significant oral antithrombotic activity.  相似文献   

15.
Two routes to protected derivatives of 2,5-anhydroallitol were investigated. The first route, involving a two-step reduction of 2,5-anhydro-6-O-benzoyl-3,4-O-isopropylidene-D-allonitrile (4), gave a mixture of 2,5-anhydro-6-O-benzoyl-3,4-O-isopropylidene-D-altritol (7) and a lesser amount of the desired 2,5-anhydro-6-O-benzoyl-3,4-O-isopropylidene-D-allitol (6). Isomerization was shown to occur in the first reduction step—treatment of the nitrile 4 with Raney nickel, sodium hypophosphite, and acetic acid. The second route gave isomerically pure 2,5-anhydro-3,4,6-tri-O-benzyl-D-allitol (21) via reduction of the corresponding ethyl allonate (18).  相似文献   

16.
Regioselective monoacetylation of 2-allyloxycarbonylamino-1,6-anhydro-2-deoxy-beta-D-glucopyranose (1) gave a mixture of 3-O-acetyl and 4-O-acetyl derivatives, the structures of which were established by two-dimensional, phase-sensitive NOESY and confirmed by chemical proofs. The benzylation of 1, on the other hand, led to 2-allyloxycarbonylamino-1,6-anhydro-3,4-di- (5) or 2-allyloxycarbonylamino-1,6-anhydro-2-N-benzyl-3,4-di-O-benzyl-2-d eoxy-beta-D- glucopyranose (10). The regioselective cleavage of 5 with titanium tetrachloride gave the expected 3-O-benzyl derivative, the structure of which was ascertained by chemical proofs; the same reaction performed on 10 led to the opening of the anhydro ring to afford 3-benzyl-[3,4-di-O-benzyl-1,2-dideoxy-alpha-D-glucopyrano]-[2,1-d] -2- oxazolidone.  相似文献   

17.
The (salen)Co(III)OAc ((R,R)-1 and (S,S)-1) catalyzed cyclizations of the chiral dianhydro sugars, 1,2:5,6-dianhydro-3,4-di-O-methyl-D-glucitol (2), 1,2:5,6-dianhydro-3,4-di-O-methyl-D-mannitol (3), 1,2:5,6-dianhydro-3,4-di-O-methyl-L-iditol (4), and 1,2:4,5-dianhydro-3-O-methyl-L-arabinitol (5), is a facile method for the synthesis of anhydroalditol alcohols. Cyclization of 2 using (R,R)-1 and (S,S)-1 proceeded diastereoselectively to form 2,5-anhydro-3,4-di-O-methyl-D-mannitol (6) and 2,5-anhydro-3,4-di-O-methyl-L-iditol (7), respectively. The cyclization of 3 and 5 is a novel method for obtaining 1,6-anhydro-3,4-di-O-methyl-D-mannitol (11) and a stereoselective route to 1,5-anhydro-3-O-methyl-L-arabinitol (13). It is proposed that the reaction occurs via endo-selective cyclization of an epoxy alcohol produced by the endo-selective ring-opening of one of the two epoxide moieties in the starting material.  相似文献   

18.
4-nitrophenyl 3,4,6-tri-O-acetyl-2-azido-2-deoxy-alpha- and beta-D-mannopyranosides were prepared from methyl 4,6-O-benzylidene-alpha-D-glucopyranoside and 1,3,4,6-tetra-O-acetyl-alpha-D-glucopyranose, respectively. Chemoselective reduction of both azides with hydrogen sulfide readily afforded 4-nitrophenyl 2-acetamido-4,6-di-O-acetyl-2-deoxy-alpha-D- and -beta-D-mannopyranosides in higher yields than reduction with triphenylphosphine or a polymer-supported triarylphosphine. Subsequent de-O-acetylation yielded 4-nitrophenyl 2-acetamido-2-deoxy-alpha-D-mannopyranoside and 4-nitrophenyl 2-acetamido-2-deoxy-beta-D-mannopyranoside in 20% and 44% overall yields, respectively.  相似文献   

19.
1,2,3,4-Tetra-O-acetyl-5-thio-D-ribopyranose as well as its 1-bromide were used as donors in the reaction with 4-cyano- and 4-nitrobenzenethiol, to give the corresponding thioglycosides in different anomeric ratios depending on the reaction conditions. Zemplén deacetylation afforded 4-cyanophenyl as well as 4-nitrophenyl 1,5-dithio-alpha- and beta-D-ribopyranosides, respectively. 1,3,4-Tri-O-acetyl-2-deoxy-5-thio-D-erythro-pentopyranose was synthesized from methyl 2-deoxy-D-erythro-pentofuranoside and was coupled with 4-cyano- and 4-nitrobenzenethiol to give anomeric mixtures from which 4-cyanophenyl as well as 4-nitrophenyl 1,5-dithio-beta-D-erythro-pentopyranosides were isolated after deacetylation. 1,4-Di-O-acetyl-2,3-dideoxy-5-thio-D-glycero-pentopyranose was obtained starting from 1,2,5,6-di-O-isopropylidene-D-mannitol and used as the donor in the glycosylation reaction with 4-cyano- and 4-nitrobenzenethiol. The resulting anomeric mixtures were separated to give, after deacetylation, 4-cyanophenyl as well as 4-nitrophenyl 2,3-dideoxy-1,5-dithio-beta-D-glycero-pentopyranosides. All of these thioglycosides showed significant antithrombotic activity on rats after oral administration.  相似文献   

20.
The dithionite-mediated addition of BrCF(2)Cl to 3,4-di-O-pivaloyl-D-xylal (1) generated preferably 1-CF(2)Cl-substituted products, that is, (2-bromo-2-deoxy-3,4-di-O-pivaloyl-beta-D-xylopyranosyl)-chlorodifluoromethane and (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane. Selected chlorodifluoromethyl-substituted monosaccharide derivatives were hydrodechlorinated or alkylated at the CF(2)Cl-group using tin reagents under radical reaction conditions. Thus, hydrodechlorinations of (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane and of methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2,6-dideoxy-alpha/beta-L-glucopyranoside are reported using tri-n-butyltin hydride initiated by AIBN. UV-initiated allylations are reported for reactions of (2-deoxy-3,4-di-O-pivaloyl-beta-D-threo-pentopyranosyl)-chlorodifluoromethane, (2,3,4-tri-O-acetyl-6-deoxy-alpha-L-galactopyranosyl)-chlorodifluoromethane, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-glucopyranose, 1,3,4,6-tetra-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha-D-mannopyranose and methyl 3,4-di-O-acetyl-2-C-chlorodifluoromethyl-2-deoxy-alpha/beta-D-rabinopyranoside with allyltri-n-butyltin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号