首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Heavy metal stress and sulfate uptake in maize roots   总被引:1,自引:0,他引:1       下载免费PDF全文
ZmST1;1, a putative high-affinity sulfate transporter gene expressed in maize (Zea mays) roots, was functionally characterized and its expression patterns were analyzed in roots of plants exposed to different heavy metals (Cd, Zn, and Cu) interfering with thiol metabolism. The ZmST1;1 cDNA was expressed in the yeast (Saccharomyces cerevisiae) sulfate transporter mutant CP154-7A. Kinetic analysis of sulfate uptake isotherm, determined on complemented yeast cells, revealed that ZmST1;1 has a high affinity for sulfate (Km value of 14.6 +/- 0.4 microm). Cd, Zn, and Cu exposure increased both ZmST1;1 expression and root sulfate uptake capacity. The metal-induced sulfate uptakes were accompanied by deep alterations in both thiol metabolism and levels of compounds such as reduced glutathione (GSH), probably involved as signals in sulfate uptake modulation. Cd and Zn exposure strongly increased the level of nonprotein thiols of the roots, indicating the induction of additional sinks for reduced sulfur, but differently affected root GSH contents that decreased or increased following Cd or Zn stress, respectively. Moreover, during Cd stress a clear relation between the ZmST1;1 mRNA abundance increment and the entity of the GSH decrement was impossible to evince. Conversely, Cu stress did not affect nonprotein thiol levels, but resulted in a deep contraction of GSH pools. Our data suggest that during heavy metal stress sulfate uptake by roots may be controlled by both GSH-dependent or -independent signaling pathways. Finally, some evidence suggesting that root sulfate availability in Cd-stressed plants may limit GSH biosynthesis and thus Cd tolerance are discussed.  相似文献   

2.
3.
Sulfate transporters present at the root surface facilitate uptake of sulfate from the environment. Here we report that uptake of sulfate at the outermost cell layers of Arabidopsis root is associated with the functions of highly and low-inducible sulfate transporters, Sultr1;1 and Sultr1;2, respectively. We have previously reported that Sultr1;1 is a high-affinity sulfate transporter expressed in root hairs, epidermal and cortical cells of Arabidopsis roots, and its expression is strongly upregulated in plants deprived of external sulfate. A novel sulfate transporter gene, Sultr1;2, identified on the BAC clone F28K19 of Arabidopsis, encoded a polypeptide of 653 amino acids that is 72.6% identical to Sultr1;1 and was able to restore sulfate uptake capacity of a yeast mutant lacking sulfate transporter genes (K(m) for sulfate = 6.9 +/- 1.0 microm). Transgenic Arabidopsis plants expressing the fusion gene construct of the Sultr1;2 promoter and green fluorescent protein (GFP) showed specific localization of GFP in the root hairs, epidermal and cortical cells of roots, and in the guard cells of leaves, suggesting that Sultr1;2 may co-localize with Sultr1;1 in the same cell layers at the root surface. Sultr1;1 mRNA was abundantly expressed under low-sulfur conditions (50-100 microm sulfate), whereas Sultr1;2 mRNA accumulated constitutively at high levels under a wide range of sulfur conditions (50-1500 microm sulfate), indicating that Sultr1;2 is less responsive to changes in sulfur conditions. Addition of selenate to the medium increased the level of Sultr1;1 mRNA in parallel with a decrease in the internal sulfate pool in roots. The level of Sultr1;2 mRNA was not influenced under these conditions. Antisense plants of Sultr1;1 showed reduced accumulation of sulfate in roots, particularly in plants treated with selenate, suggesting that the inducible transporter Sultr1;1 contributes to the uptake of sulfate under stressed conditions.  相似文献   

4.
5.
To investigate the uptake and long-distance translocation of sulphate in plants, we have characterized three cell-type-specific sulphate transporters, Sultr1;1, Sultr2;1 and Sultr2;2 in Arabidopsis thaliana. Heterologous expression in the yeast sulphate transporter mutant indicated that Sultr1;1 encodes a high-affinity sulphate transporter (Km for sulphate 3.6 +/- 0.6 microM), whereas Sultr2;1 and Sultr2;2 encode low-affinity sulphate transporters (Km for sulphate 0.41 +/- 0.07 mM and >/= 1.2 mM, respectively). In Arabidopsis plants expressing the fusion gene construct of the Sultr1;1 promoter and green fluorescent protein (GFP), GFP was localized in the lateral root cap, root hairs, epidermis and cortex of roots. beta-glucuronidase (GUS) expressed with the Sultr2;1 promoter was specifically accumulated in the xylem parenchyma cells of roots and leaves, and in the root pericycles and leaf phloem. Expression of the Sultr2;2 promoter-GFP fusion gene showed specific localization of GFP in the root phloem and leaf vascular bundle sheath cells. Plants continuously grown with low sulphate concentrations accumulated high levels of Sultr1;1 and Sultr2;1 mRNA in roots and Sultr2;2 mRNA in leaves. The abundance of Sultr1;1 and Sultr2;1 mRNA was increased remarkably in roots by short-term stress caused by withdrawal of sulphate. Addition of selenate in the sulphate-sufficient medium increased the sulphate uptake capacity, tissue sulphate content and the abundance of Sultr1;1 and Sultr2;1 mRNA in roots. Concomitant decrease of the tissue thiol content after selenate treatment was consistent with the suggested role of glutathione (GSH) as a repressive effector for the expression of sulphate transporter genes.  相似文献   

6.
Demand-driven signaling will contribute to regulation of sulfur acquisition and distribution within the plant. To investigate the regulatory mechanisms pedospheric sulfate and atmospheric H(2)S supply were manipulated in Brassica oleracea. Sulfate deprivation of B. oleracea seedlings induced a rapid increase of the sulfate uptake capacity by the roots, accompanied by an increased expression of genes encoding specific sulfate transporters in roots and other plant parts. More prolonged sulfate deprivation resulted in an altered shoot-root partitioning of biomass in favor of the root. B. oleracea was able to utilize atmospheric H(2)S as S-source; however, root proliferation and increased sulfate transporter expression occurred as in S-deficient plants. It was evident that in B. oleracea there was a poor shoot to root signaling for the regulation of sulfate uptake and expression of the sulfate transporters. cDNAs corresponding to 12 different sulfate transporter genes representing the complete gene family were isolated from Brassica napus and B. oleracea species. The sequence analysis classified the Brassica sulfate transporter genes into four different groups. The expression of the different sulfate transporters showed a complex pattern of tissue specificity and regulation by sulfur nutritional status. The sulfate transporter genes of Groups 1, 2, and 4 were induced or up-regulated under sulfate deprivation, although the expression of Group 3 sulfate transporters was not affected by the sulfate status. The significance of sulfate, thiols, and O-acetylserine as possible signal compounds in the regulation of the sulfate uptake and expression of the transporter genes is evaluated.  相似文献   

7.
BRASSICA NAPUS was grown under hydroponic conditions and responses to the removal of the external supply of sulfur (S) were analysed in roots and in leaves of different developmental age. The concentrations of sulfate and nitrate were greatest in the older leaves and least in younger leaves, whilst phosphate was greatest in roots and youngest leaves and least in old leaves. S-deprivation resulted in decreases in tissue sulfate concentrations at variable rates in the order: roots and young leaves > middle-aged leaves > oldest leaves. Phosphate concentrations were unaffected and nitrate concentrations were only depleted in the oldest leaves. Expression of representative members of the sulfate transporter gene family was assessed by Northern blotting in the respective tissues. Group 1 transporters (high affinity type) were induced in response to S-deprivation in all tissues except old leaves, where no expression was detected, and to the greatest extent in roots. Groups 2 and 5 (a BRASSICA Group 5 sulfate transporter is reported here, accession number: AJ311389) transporters showed either no or only a small induction by S-deprivation. Group 4 transporters (localised in the tonoplast membrane and thought to be involved in vacuolar sulfate efflux) were induced by S-deprivation with a complex pattern: 4;1 was expressed in root and mature leaves, was strongly induced by sulfur-deprivation in roots, and was also induced in the middle-aged leaves alone; 4;2 was only expressed under S-deprivation in parallel with the observed pattern of tissue sulfate concentrations. Expression patterns indicated that both differences in intracellular sulfate pools and localised aspects of the signal transduction pathway link tissue sulfate-status and sulfur-nutrition regulated gene expression.  相似文献   

8.
The uptake and distribution of sulfate in BRASSICA OLERACEA, a species characterised by its high sulfate content in root and shoot, are coordinated and adjusted to the sulfur requirement for growth, even at external sulfate concentrations close to the K (m) value of the high-affinity sulfate transporters. Plants were able to grow normally and maintain a high sulfur content when grown at 5 or 10 microM sulfate in the root environment. Abundance of mRNAs for the high affinity sulfate transporters, BolSultr1;1 and BolSultr1;2, were enhanced at 相似文献   

9.
Rae AL  Smith FW 《Planta》2002,215(4):565-568
  相似文献   

10.
As sulfur constitutes one of the macronutrients necessary for the plant life cycle, sulfur uptake and assimilation in higher plants is one of the crucial factors determining plant growth and vigour, crop yield and even resistance to pests and stresses. Inorganic sulfate is mostly taken up as sulfate from the soil through the root system or to a lesser extent as volatile sulfur compounds from the air. In a cascade of enzymatic steps inorganic sulfur is converted to the nutritionally important sulfur-containing amino acids cysteine and methionine (Hell, 1997; Hell and Rennenberg, 1998; Saito, 1999). Sulfate uptake and allocation between plant organs or within the cell is mediated by specific transporters localised in plant membranes. Several functionally different sulfate transporters have to be postulated and have been already cloned from a number of plant species (Clarkson et al., 1993; Hawkesford and Smith, 1997; Takahashi et al., 1997; Yamaguchi, 1997). Following import into the plant and transport to the final site of reduction, the plastid, the chemically relatively inert sulfate molecule is activated through binding to ATP forming adenosine-5'-phosphosulfate (APS). This enzymatic step is controlled through the enzyme ATP-sulfurylase (ATP-S). APS can be further phosphorylated to form 3'-phosphoadenosine-5'-phosphosulfate (PAPS) which serves as sulfate donor for the formation of sulfate esters such as the biosynthesis of sulfolipids (Schmidt and J?ger, 1992). However, most of the APS is reduced to sulfide through the enzymes APS-reductase (APR) and sulfite reductase (SIR). The carbon backbone of cysteine is provided through serine, thus directly coupling photosynthetic processes and nitrogen metabolism to sulfur assimilation. L-serine is activated by serine acetyltransferase (SAT) through the transfer to an acetyl-group from acetyl coenzyme A to form O-acetyl-L-serine (OAS) which is then sulhydrylated using sulfide through the enzyme O-acetyl-L-serine thiol lyase (OAS-TL) forming cysteine. Cysteine is the central precursor of all organic molecules containing reduced sulfur ranging from the amino acid methionine to peptides as glutathione or phytochelatines, proteines, vitamines, cofactors as SAM and hormones. Cysteine and derived metabolites display essential roles within plant metabolism such as protein stabilisation through disulfide bridges, stress tolerance to active oxygen species and metals, cofactors for enzymatic reactions as e.g. SAM as major methylgroup donor and plant development and signalling through the volatile hormone ethylene. Cysteine and other metabolites carrying free sulfhydryl groups are commonly termed thioles (confer Fig. 1). The physiological control of the sulfate reduction pathway in higher plants is still not completely understood in all details. The objective of this paper is to summarise the available data on the molecular analysis and control of cysteine biosynthesis in plants, and to discuss potentials for manipulating the pathway using transgenic approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号