首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 406 毫秒
1.
低磷胁迫下磷高效基因型大麦的根系形态特征   总被引:1,自引:0,他引:1  
在根袋土培盆栽条件下,以磷高效基因型DH110+、DH147和低效基因型DH49大麦为试验材料,利用根系分析系统分析不同施磷(P2O5)水平(极低磷25 mg·kg-1、低磷50 mg·kg-1和正常磷75 mg·kg-1)下,磷高效基因型大麦的根系形态特征及其与植株磷素吸收的关系.结果表明: 低磷胁迫显著降低大麦生物量和磷吸收量,其中磷高效基因型的生物量和磷吸收量在各施磷水平下分别为低效基因型的1.24~1.70和1.18~1.83倍;大麦的总根长、总根表面积、平均根系直径、不定根长及其根表面积、侧根长及其根表面积均随施磷水平的降低而显著降低,其中磷高效基因型大麦在各施磷水平下的总根长、总根表面积、比根长、侧根长及根表面积分别为低效基因型的1.46~2.06、1.12~1.51、1.35~1.72、1.69~2.42和1.40~1.78倍,而平均根系直径为低效基因型的70.6%~90.2%;主成分分析表明,平均根系直径、比根表面积和比根长受基因型差异的影响较为明显,是区分两类磷效率基因型大麦根系形态差异的主要指标;偏最小二乘回归分析表明,各施磷水平下,总根长、总根表面积对大麦植株磷素吸收贡献均较大,随施磷水平降低,不定根长、不定根表面积对大麦植株磷素吸收的贡献明显降低,而平均根系直径、比根长、侧根长及其根表面积的贡献明显增加.磷高效基因型大麦可通过维持侧根的生长、根细度和比根长的增加来适应低磷胁迫.  相似文献   

2.
烟草磷效率的基因型差异及其与根系形态构型的关系   总被引:6,自引:0,他引:6  
以17个具有代表性的主要烟草基因型为材料,通过盆栽试验和培养基栽培试验,研究烟草磷效率的基因型差异及其与根系形态构型的关系,为磷高效烟草品种选育提供理论依据.结果表明,施磷肥能够显著增加各供试烟草基因型的生物量及氮、磷和钾的累积量;供试烟草的磷效率和氮、钾累积量存在显著基因型差异,土壤盆栽试验中,低磷条件下的'云烟85'生物量和磷累积量分别是'NC82'的4.06倍和3.34倍,氮和钾累积量分别是'K358'的4.06倍和3.75倍;供试烟草可划分为磷低效低产型、磷低效高产型、磷高效高产型、磷高效低产型等4种类型,其中的'云烟85'、'K326'、'云烟2号'、'RG11'和'红花大金元'属于磷高效高产型,是现代磷高效高产品种选育的理想材料.供试烟草基因型的根系形态构型与其磷效率显著相关,与磷低效低产型烟草'G28'和'许金1号'相比,磷高效高产型烟草'云烟85'和'K326'在高低磷条件下根系均较发达,总根长和根表面积均较大;磷有效性对烟草根构型具有调节作用,在缺磷条件下,磷高效基因型具有浅根根构型,而磷低效基因型具有深根根构型.  相似文献   

3.
缺磷胁迫下的小麦根系形态特征研究   总被引:52,自引:10,他引:42  
研究了缺磷条件下不同基因型小麦(Triticum aestivum L.)苗期根系形态学适应特征,以明确环境因子对根系不同组分(根轴和侧根)生长发育调控作用的强度和根系形态与磷营养效率关系。在缺P环境中,小麦根轴数量和侧根长度明显减小,同化物向根部的分配比例增加,根轴长度、侧根数量和根系长度等均有显著提高。供试基因型小麦的根轴数量及其长度的差异在每个供磷水平及不同供磷水平之间均呈显著,说明这两种性状的差异是由基因型和环境因素共同决定的;而侧根特征的差异只在不同供磷水平间显著,表明侧根性状主要受环境因素的控制。对6种基因型小麦的研究表明,根轴数量、根轴长度、根生长角度和根系长度根角之间存在着显著的基因型差异。相关分析表明,小麦的相对产量与缺磷条件下的小麦苗期根系形态指标的交互作用之间具有显著的线性关系。这种关系说明根系形态性状可作为早期有效地筛选磷高效小麦品种的指标。  相似文献   

4.
单立山  李毅  张荣  张正中  种培芳 《生态学报》2017,37(21):7324-7332
为探讨荒漠植物白刺幼苗根系形态对降雨格局变化的响应特征,设置3个降雨量梯度(W-、W、W+)和2个降雨间隔时间梯度(T、T+)进行人工模拟试验,结果表明,1)降雨量和降雨间隔时间对白刺幼苗根系形态有不同程度的影响,且降雨量的作用效应更大。2)降雨量相同时,延长降雨间隔时间均使白刺幼苗主根长、根系平均直径、根体积和根表面积减小,但总根长和根系生物量和总生物量却增加,在高降雨量条件下(W+)延长降雨间隔时间白刺幼苗比根长和比表面积分别增加了45.09%和20.20%,但差异均不显著。3)降雨间隔时间相同时,降雨量减少30%仅使主根长平均增加12.06%,总根长、根平均直径、根体积和根表面积等根系形态指标均显著减少,比根长和比表面积变化不大;降雨量增加30%仅使比表面积显著增加,其余各形态指标差异均不显著,低降雨量条件下(W-)主根长与根冠比达到最大,其他指标均在高降雨量条件下(W+)达到最大。4)对8个根系形态参数进行主成分分析,根系生物量、总根长、总根表面积、比根长、比表面积和根体积6个根系生态参数受降雨格局影响显著。  相似文献   

5.
菜豆根构型对低磷胁迫的适应性变化及基因型差异   总被引:48,自引:0,他引:48  
利用特殊设计的营养袋纸培养和分层式磷控释砂培等根系生长系统结合计算机图像分析技术,以基根根长在生长介质各层的相对分布和基根平均生长角度为指标,定量测定菜豆(Phaseolus vulgaris L.)根构型在低磷胁迫下的适应性变化及其与磷效率的关系。结果表明,菜豆根构型对低磷胁迫具有适应性反应,在缺磷条件下基根向地性减弱,基根在生长介质表层相对分布增多、基根平均生长角度(与水平线夹角)变小,从而导  相似文献   

6.
不同基因型春蚕豆对磷胁迫的适应性反应   总被引:16,自引:0,他引:16  
张恩和  张新慧  王惠珍 《生态学报》2004,24(8):1589-1593
利用不同作物或品种吸收利用土壤磷能力的差异提高磷素营养效率,是解决磷资源短缺的重要生物学途径.选择西北地区重要经济作物春蚕豆作为研究对象,选用3个不同春蚕豆品种(系),采用严重缺磷的碱性灌淤土,利用盆栽法研究了在不同供磷水平下不同基因型蚕豆的根系形态特征、酸性磷酸酶活性(APase)及产量的表现, 探讨不同基因型蚕豆对低磷胁迫的适应性反应.结果表明在整个生长过程中根长、根半径、根比表面积和根冠比变动最明显的是临蚕5号,分别为36.40%,65.10%、65.27%和13. 46%;缺磷条件下,蚕豆主要通过减小根半径,增加根长、根表面积,提高根冠比及体内酸性磷酸酶活性来实现对低磷胁迫的适应;不同基因型对低磷胁迫的适应能力不同;缺磷胁迫明显诱导各基因型蚕豆体内酸性磷酸酶活性的上升,临蚕5号增加最快为24.9%,8409为7. 79%,8354为7.29%;同一基因型的不同器官中酸性磷酸酶活性大小表现为根系>茎部>叶片 .根系酸性磷酸酶和根系形态参数可分别作为蚕豆耐低磷品种筛选的选择指标;缺磷导致作物减产,并且不同的基因型作物减产的幅度不同,临蚕5号缺磷比施磷减产30.98%,而8354 的产量在两个磷水平下变化不明显,说明临蚕5号对磷素的反应最强烈,为磷低效基因型,而 8354反应比较迟钝,为磷高效基因型.  相似文献   

7.
激素是植物适应逆境的重要信号物质, 从激素调控角度研究植物对养分匮乏环境的适应机制对磷高效营养基因型的选育具有重要意义。该研究通过分析被动忍受型(M1)与主动活化型(M4)两个磷高效利用杉木(Cunninghamia lanceolata)基因型在低磷胁迫下不同处理阶段的激素含量变化规律, 结合根系形态变化、干物质及养分分配规律, 研究磷高效利用杉木对低磷胁迫的适应性与内源激素的相关性。结果表明: 低磷处理下, 磷高效利用杉木M1与M4叶的激素含量与其适应特性之间无相关性, 而根系的激素含量与根系生长显著相关。低磷处理条件下, M1与M4根系中的IAA含量自27 h起表现为大于高磷对照, 且随时间延长呈增加趋势。根系中的IAA含量与根表面积、体积及根长等显著正相关, IAA的增加诱导了根系的增长, M1与M4均表现出一定的根系增长量。其中, M4存在明显的IAA由地上向基部积累的现象, M4的根系增生能力比M1更强。同时, 根系增长促使更多的干物质分配到根系, M4的根冠比在整个处理过程中均高于高磷对照。与IAA相同, M1与M4根系的ABA与GA3含量总体也表现为低磷处理>高磷对照, 但随时间延长, 低磷条件下ABA与GA3的含量呈下降趋势, 二者与根系增长量呈负相关关系。M1与M4根系内的ZT含量在低磷条件下也呈下降趋势, 且逐渐低于高磷对照, 而其与低磷适应特性间并无显著相关性。可见, 低磷胁迫下, 磷高效利用杉木M1与M4根系中的IAA、ABA与GA3含量与其根系形态变化密切相关, 各器官的物质、能量、信息的综合调控是植物适应低磷逆境的重要生存策略。  相似文献   

8.
采用水培方法,研究了不同磷水平下小麦-蚕豆间作体系根系形态变化及其与内源激素的相关关系。结果表明: 与单作小麦相比,在低磷(1/2P)水平下,小麦-蚕豆间作能显著增加小麦的根长,显著减少小麦根系的平均直径,显著增加根系的表面积;在常规磷(P)水平下,间作能显著降低小麦根系的平均直径,有增加小麦根长和根表面积的趋势;与单作蚕豆相比,间作能明显促进蚕豆根系的增长,同时增加蚕豆根表面积。在1/2P水平下,间作能显著提高小麦和蚕豆根系中的生长素(IAA)、脱落酸(ABA)、水杨酸(SA)和茉莉酸(JA)含量;在P水平下,间作能显著提高小麦根系中的IAA、ABA和JA含量,单、间作小麦根系中的SA含量没有显著差异,间作显著增加了蚕豆根系中ABA和SA含量,单、间作蚕豆根系中的IAA和JA含量无显著差异。单作条件下,小麦和蚕豆根系中的内源激素(IAA、ABA、SA和JA)含量与其根系形态(根长、根平均直径和根表面积)无显著相关性;间作条件下,小麦和蚕豆根系中的IAA含量与根长和根表面积之间存在明显的正相关关系。由此可见,小麦-蚕豆间作能够诱导小麦和蚕豆根系IAA的增加。这种变化可能是驱动间作系统根系形态变化的重要因子。  相似文献   

9.
以7个马尾松(Pinus massoniana)一代种子园自由授粉家系为材料, 设置同质低磷(P)胁迫和异质低P胁迫模拟的盆栽试验, 系统研究马尾松家系对不同类型低P胁迫的适应机制和P效率变异规律。结果表明, 参试马尾松家系的苗高、地径和生物量等P效率指标均表现出显著的家系变异, 主要P效率指标的家系遗传力均较高, 干物质积累量的广义遗传力大于0.80, 揭示了马尾松P营养效率的较大遗传改良潜力。马尾松对不同类型低P胁迫的适应机制有所差异。在同质低P胁迫下, ‘3201’、‘1217’等高P效率家系的根系主要参数均高于低P效率家系, 表明整体根系参数的适应性变化是P效率和生物量形成的决定因素。在异质低P胁迫下, 高P效率马尾松家系在表层富P介质的根系分布量、分布比例均显著增加, 表层根系参数与马尾松家系P效率呈显著正相关, 揭示根系空间构型的适应性变化是决定马尾松高P效率的重要生物学基础。表层根系生物量、表层根相对比例的家系遗传力达0.88和0.72, 证实了以马尾松根构型的适应变化为突破口, 选育具有理想根构型和较高P效率的马尾松家系。  相似文献   

10.
低磷和铝毒胁迫条件下菜豆有机酸的分泌与累积   总被引:19,自引:3,他引:16  
沈宏  严小龙 《生态学报》2002,22(3):387-394
以水培方式研究了低磷、铝毒胁迫条件下,不同菜豆基因型根系有机酸的分泌及其在植穆不同部位的累积,结果表明,低磷,铝毒胁迫诱导菜豆有机酸的分泌与累积存在显著的基因差异。低磷、铝毒胁迫诱导菜豆主要分泌柠檬酸、酒石酸和乙酸,其中,50μmol/LAl^3 诱导柠檬酸分泌量最高;低磷(小于20μmol/LH2PO4^-)胁迫诱导柠榨菜酸分泌量显著高于高磷处理,但低磷处理之间差异不明显,铝毒胁迫诱导菜豆有机酸的分泌与累积显著高于低磷胁迫处理,低磷,铝毒胁迫植株不同部位有机酸的含量为叶片大小根系,低磷,铝毒胁迫时,G842菜豆型柠檬酸有机酸分泌总量显著高于273、AFR和ZPV,其干重和磷吸收明明显于大G273,AFR和ZPV,且铝吸收量小于G273,AFR和ZPV,说明,G482菜豆基因型对低磷,铝毒的适应能力强于G273,AFR和ZPV基因型,菜豆有机酸,,尤其柠檬酸的分泌是其适应低磷、铝毒胁迫的重要生理反应。  相似文献   

11.
Root morphology in plants may be related to phosphorus (P) efficiency by affecting the absorption characteristics of the root system. However, genotypic variation in root morphological characteristics of common bean (Phaseolus vulgaris L.) as affected by P availability has not been well clarified. In the present study, systematic studies were conducted in a P-buffered sand culture system using three pairs of common bean parental materials with contrasting root traits in response to P deficiency. The results indicate that P availability significantly affects bean root morphology. Common bean tends to have smaller root system, shorter and coarser roots at low P availability. Genotypic variation in root morphology was observed among different genotypes in response to P availability. The P efficient genotypes appear to have larger, finer and longer root systems than the P inefficient genotypes, and such a variation was particularly obvious in the basal roots. From allomeric analysis, we found that morphological characteristics of the basal roots contribute more to P efficiency than those of the tap roots. Further studies with the F9 recombinant inbred lines derived from one of the most contrasting parental pairs, DOR364 and G19833, confirmed the above findings, indicating that those morphological characteristics are inheritable hence provide potential for genetic improvement. Root morphology in plants may be related to phosphorus (P) efficiency by affecting the absorption characteristics of the root system. However, genotypic variation in root morphological characteristics of common bean (Phaseolus vulgaris L.) as affected by P availability has not been well clarified. In the present study, systematic studies were conducted in a P-buffered sand culture system using three pairs of common bean parental materials with contrasting root traits in response to P deficiency. The results indicate that P availability significantly affects bean root morphology. Common bean tends to have smaller root system, shorter and coarser roots at low P availability. Genotypic variation in root morphology was observed among different genotypes in response to P availability. The P efficient genotypes appear to have larger, finer and longer root systems than the P inefficient genotypes, and such a variation was particularly obvious in the basal roots. From allomeric analysis, we found that morphological characteristics of the basal roots contribute more to P efficiency than those of the tap roots. Further studies with the F9 recombinant inbred lines derived from one of the most contrasting parental pairs, DOR364 and G19833, confirmed the above findings, indicating that those morphological characteristics are inheritable hence provide potential for genetic improvement.  相似文献   

12.
Root architectural responses to phosphorus (p) availability may be an important trait for P acquisition efficiency. In the present study, The authors examined the effects of P availability on root architectural responses of different common bean genotypes. Five common bean (Phaseolus vulgaris L.) genotypes representing different origins and ecotypic races were compared both in a specially designed paper pouch system and a stratified P buffer sand culture system with computer image analysis. The results showed that root architecture was regulated by P availability. P deficiency led to form a shallower root system, as indicated by increased relative distribution of basal root length in the upper layers and decreased the growth angle of basal roots. There was significant genetic variation in root architecture in response to P deficiency both in the paper pouch system and the stratified sand culture system. Under low P conditions some genotypes were more gravitropically sensitive to low P availability, resulting in producing a shallower root system and enhanced root exploration into the surface soil, where soil available P is more concentrated. G19833 and DOR364, which were most contrasting in P efficiency, were also very different in root architectural response to P availability. The results from this study suggest that P availability regulates root architecture and P deficiency leads to shallower root architecture in beans. The genetic potential of root architecture provides the possibility of selecting this trait for improving P acquisition efficiency in common bean.  相似文献   

13.
Root architectural plasticity might be an important factor in the acquisition by plants of immobile nutrients such as phosphorus (P). In this study, we examined the effect of P availability on the orientation of basal roots with respect to gravity, and thereby on the growth angle of these roots of common bean (Phaseolus vulgaris L.). In one set of studies the growth angle of basal roots of bean seedlings was measured over time. Sixteen bean genotypes were examined; six showed a decrease in root orientation with respect to gravity in low P media, one increased orientation, and nine showed no difference within 5 d of basal root emergence. Bean taproots also showed decreased root orientation with respect to gravity in low P. Growth angle after 5 d was correlated with field performance of contrasting genotypes in low P tropical soils. Mineral deficiencies other than P did not cause changes in root angle. In a split pouch system that provided high or low P solution to different parts of the root system, the decrease in root angle in low P was found to be a response to global P availability, and not local to the portion of the root system in low P. Effects of P availability on root angle were associated with reduced shoot P concentration, but preceded effects on plant biomass accumulation and leaf area expansion. Results from growth pouches for genotype G 19833 were confirmed using a solid-phase buffered sand-culture system supplying P at three levels. Pea (Pisum sativum), soybean (Glycine max Williams), chickpea (Cicer arietinum), lima bean (Phaseolus lunatus), and lentil (Lens culinaris) were grown with and without P; soybean and pea also showed decreased basal root angles in low P.  相似文献   

14.
A common response to low phosphorus availability is increased relative biomass allocation to roots. The resulting increase in root:shoot ratio presumably enhances phosphorus acquisition, but may also reduce growth rates by diverting carbon to the production of heterotrophic rather than photosynthetic tissues. To assess the importance of increased carbon allocation to roots for the adaptation of plants to low P availability, carbon budgets were constructed for four common bean genotypes with contrasting adaptation to low phosphorus availability in the field ("phosphorus efficiency"). Solid-phase-buffered silica sand provided low (1 microM), medium (10 microM), and high (30 microM) phosphorus availability. Compared to the high phosphorus treatment, plant growth was reduced by 20% by medium phosphorus availability and by more than 90% by low phosphorus availability. Low phosphorus plants utilized a significantly larger fraction of their daytime net carbon assimilation on root respiration (c. 40%) compared to medium and high phosphorus plants (c. 20%). No significant difference was found among genotypes in this respect. Genotypes also had similar rates of P absorption per unit root weight and plant growth per unit of P absorbed. However, P-efficient genotypes allocated a larger fraction of their biomass to root growth, especially under low P conditions. Efficient genotypes had lower rates of root respiration than inefficient genotypes, which enabled them to maintain greater root biomass allocation than inefficient genotypes without increasing overall root carbon costs.  相似文献   

15.
Effect of phosphorus availability on basal root shallowness in common bean   总被引:27,自引:2,他引:25  
Liao  Hong  Rubio  Gerardo  Yan  Xiaolong  Cao  Aiqin  Brown  Kathleen M.  Lynch  Jonathan P. 《Plant and Soil》2001,232(1-2):69-79
Root gravitropism may be an important element of plant response to phosphorus availability because it determines root foraging in fertile topsoil horizons, and thereby phosphorus acquisition. In this study we seek to test this hypothesis in both two dimensional paper growth pouch and three-dimensional solid media of sand and soil cultures. Five common bean (Phaseolus vulgaris L.) genotypes with contrasting adaptation to low phosphorus availability were evaluated in growth pouches over 6 days of growth, and in sand culture and soil culture over 4 weeks of growth. In all three media, phosphorus availability regulated the gravitropic response of basal roots in a genotype-dependent manner. In pouches, sand, and soil, the phosphorus-inefficient genotype DOR 364 had deeper roots with phosphorus stress, whereas the phosphorus-efficient genotype G19833 responded to phosphorus stress by producing shallower roots. Genotypes were most responsive to phosphorus stress in sand culture, where relative root allocation to the 0–3- and 3–6-cm horizons increased 50% with phosphorus stress, and varied 300% (3–6 cm) to 500% (0–3 cm) among genotypes. Our results indicate that (1) phosphorus availability regulates root gravitropic growth in both paper and solid media, (2) responses observed in young seedlings continue throughout vegetative growth, (3) the response of root gravitropism to phosphorus availability varies among genotypes, and (4) genotypic adaptation to low phosphorus availability is correlated with the ability to allocate roots to shallow soil horizons under phosphorus stress.  相似文献   

16.
Ge  Zhenyang  Rubio  Gerardo  Lynch  Jonathan P 《Plant and Soil》2000,218(1-2):159-171
We have observed that low soil phosphorus availability alters the gravitropic response of basal roots in common bean (Phaseolus vulgaris L.), resulting in a shallower root system. In this study we use a geometric model to test the hypotheses that a shallower root system is a positive adaptive response to low soil P availability by (1) concentrating root foraging in surface soil horizons, which generally have the highest P availability, and (2) reducing spatial competition for P among roots of the same plant. The growth of nine root systems contrasting in gravitropic response over 320 h was simulated in SimRoot, a dynamic three-dimensional geometric model of root growth and architecture. Phosphorus acquisition and inter-root competition were estimated with Depzone, a program that dynamically models nutrient diffusion to roots. Shallower root systems had greater P acquisition per unit carbon cost than deeper root systems, especially in older root systems. This was due to greater inter-root competition in deeper root systems, as measured by the volume of overlapping P depletion zones. Inter-root competition for P was a significant fraction of total soil P depletion, and increased with increasing values of the P diffusion coefficient (De), with root age, and with increasing root gravitropism. In heterogenous soil having greater P availability in surface horizons, shallower root systems had greater P acquisition than deeper root systems, because of less inter-root competition as well as increased root foraging in the topsoil. Root P acquisition predicted by SimRoot was validated against values for bean P uptake in the field, with an r 2 between observed and predicted values of 0.75. Our results support the hypothesis that altered gravitropic sensitivity in P-stressed roots, resulting in a shallower root system, is a positive adaptive response to low P availability by reducing inter-root competition within the same plant and by concentrating root activity in soil domains with the greatest P availability. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Plant root development can be largely affected through the association of roots with plant growth-promoting rhizobacteria (PGPR). However, little is known about the identity of plant genes enabling such PGPR-plant root associations. Differences in the responsiveness to PGPR among cultivars suggest genetic variation for this trait within germplasm. In this study, two genotypes of common bean (Phaseolus vulgaris L.), BAT477 and DOR364, were identified showing contrasting responsiveness in root development to inoculation with the PGPR Azospirillum brasilense Sp245. Inoculation with an A. brasilense Sp245 mutant strain strongly reduced in auxin biosynthesis or addition of increasing concentrations of exogenous auxin to the plant growth medium, indicated that the differential response to A. brasilense Sp245 among the bean genotypes is related to a differential response to the bacterial produced auxin. To further assess the role of the plant host in root responsiveness, a population of Recombinant Inbred Lines (RILs) of the DOR364×BAT477 cross was used to evaluate the efficacy of exogenous auxin on root development. We detected significant phenotypic variation among the RILs for basal root formation during germination upon addition of auxin to the growth medium. Genetic analysis revealed two quantitative trait loci (QTLs) associated with basal root responsiveness to auxin of which one explained 36% of the phenotypic variation among the RILs. This latter QTL mapped to the same location as a QTL for root tip formation at low P, suggesting that the host effect on root responsiveness to IAA interacts with specific root development. Also, significant correlations between basal root responsiveness to auxin and growth, root tips and root dry weight at low P were identified. To our knowledge, this is the first report on QTL detection for root responsiveness to auxin.  相似文献   

18.
At the genus and species level, variation in root anatomy and architecture may interact to affect strategies of drought avoidance. To investigate this idea, root anatomy and architecture of the drought‐sensitive common bean (Phaseolus vulgaris) and drought‐adapted tepary bean (Phaseolus acutifolius) were analyzed in relation to water use under terminal drought. Intraspecific variation for metaxylem anatomy and axial conductance was found in the roots of both species. Genotypes with high‐conductance root metaxylem phenotypes acquired and transpired more water per unit leaf area, shoot mass, and root mass than genotypes with low‐conductance metaxylem phenotypes. Interspecific variation in root architecture and root depth was observed where P. acutifolius has a deeper distribution of root length than P. vulgaris. In the deeper‐rooted P. acutifolius, genotypes with high root conductance were better able to exploit deep soil water than genotypes with low root axial conductance. Contrastingly, in the shallower‐rooted P. vulgaris, genotypes with low root axial conductance had improved water status through conservation of soil moisture for sustained water capture later in the season. These results indicate that metaxylem morphology interacts with root system depth to determine a strategy of drought avoidance and illustrate synergism among architectural and anatomical phenotypes for root function.  相似文献   

19.
Low phosphorus availability is a primary constraint to plant productivity in many natural and agricultural ecosystems. Plants display a wide array of adaptive responses to low phosphorus availability that generally serve to enhance phosphorus mobility in the soil and increase its uptake. One set of adaptive responses is the alteration of root architecture to increase phosphorus acquisition from the soil at minimum metabolic cost. In a series of studies with the common bean, work in our laboratory has shown that architectural traits that enhance topsoil foraging appear to be particularly important for genotypic adaptation to low phosphorus soils (phosphorus efficiency). In particular, the gravitropic trajectory of basal roots, adventitious rooting, the dispersion of lateral roots, and the plasticity of these processes in response to phosphorus availability contribute to phosphorus efficiency in this species. These traits enhance the exploration and exploitation of shallow soil horizons, where phosphorus availability is greatest in many soils. Studies with computer models of root architecture show that root systems with enhanced topsoil foraging acquire phosphorus more efficiently than others of equivalent size. Comparisons of contrasting genotypes in controlled environments and in the field show that plants with better topsoil foraging have superior phosphorus acquisition and growth in low phosphorus soils. It appears that many architectural responses to phosphorus stress may be mediated by the plant hormone ethylene. Genetic mapping of these traits shows that they are quantitatively inherited but can be tagged with QTLs that can be used in plant breeding programs. New crop genotypes incorporating these traits have substantially improved yield in low phosphorus soils, and are being deployed in Africa and Latin America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号