首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-ray structure of nucleoside diphosphate kinase.   总被引:8,自引:0,他引:8  
The X-ray structure of a point mutant of nucleoside diphosphate kinase (NDP kinase) from Dictyostelium discoideum has been determined to 2.2 A resolution. The enzyme is a hexamer made of identical subunits with a novel mononucleotide binding fold. Each subunit contains an alpha/beta domain with a four stranded, antiparallel beta-sheet. The topology is different from adenylate kinase, but identical to the allosteric domain of Escherichia coli ATCase regulatory subunits, which bind mononucleotides at an equivalent position. Dimer contacts between NDP kinase subunits within the hexamer are similar to those in ATCase. Trimer contacts involve a large loop of polypeptide chain that bears the site of the Pro----Ser substitution in Killer of prune (K-pn) mutants of the highly homologous Drosophila enzyme. Properties of Drosophila NDP kinase, the product of the awd developmental gene, and of the human enzyme, the product of the nm23 genes in tumorigenesis, are discussed in view of the three-dimensional structure and of possible interactions of NDP kinase with other nucleotide binding proteins.  相似文献   

2.
The primary structure of nucleoside diphosphate (NDP) kinase from spinach leaves has been deduced from its cDNA sequence. A lambda gt 11 cDNA library derived from spinach leaves was screened using an antibody against NDP kinase I, which we previously purified to electrophoretic homogeneity (T. Nomura, T. Fukui, and A. Ichikawa, 1991, Biochim. Biophys. Acta 1077, 47-55). The cDNA sequences of positive clones contained the amino acid coding region (444 base pairs) for NDP kinase I as well as 5' and 3' noncoding regions of 33 and 361 base pairs, respectively. The cDNAs hybridized to a 1.1-kb mRNA. NDP kinase I contains 148 amino acid residues with a molecular mass of 16,305, which is in excellent agreement with that of the purified enzyme (16 kDa). Homology was found between the sequence of spinach NDP kinase I and those of the rat, Myxococcus xanthus, and Dictyostelium discoideum NDP kinases, as well as the human Nm23-gene product and the awd protein of Drosophila melanogaster.  相似文献   

3.
Nucleoside diphosphate kinase (NDP kinase) from Paramecium was purified to homogeneity. The native enzyme was 80 kDa (by gel filtration), with subunits of 18 and 20 kDa. Near the amino terminus, 15 of 20 residues were identical with those in human NDP kinase, and 17 of 20 with the awd gene product from Drosophila. NDP kinase bound α-labeled ATP and GTP, and a photoreactive GTP analog labeled both subunits. Purified NDP kinase underwent autophosphorylation on a histidine and a serine residue using either ATP or GTP as a substrate. The enzyme also catalyzed acid-stable phosphorylation of casein and phosvitin. This protein kinase activity is distinct from the histidine phosphorylation that is part of the NDP kinase catalytic cycle. Antiserum against the purified protein from Paramecium cross-reacted with 16- to 20-kDa proteins in most species tested, and with a larger protein (44 kDa) in Paramecium, Xenopus, and two human lines. The multiple forms (20 and 44 kDa) of the NDP kinase in Paramecium and its protein kinase activity, suggest that the protein is more than a housekeeping enzyme; it may have regulatory roles such as those of the NDP kinase-like awd protein of Drosophila and Nm23 protein of humans.  相似文献   

4.
We demonstrate here the catalytic activity and subcellular localization of the Nm23-H4 protein, product of nm23-H4, a new member of the human nm23/nucleoside diphosphate (NDP) kinase gene family (Milon, L., Rousseau-Merck, M., Munier, A., Erent, M., Lascu, I., Capeau, J., and Lacombe, M. L. (1997) Hum. Genet. 99, 550-557). Nm3-H4 was synthesized in escherichia coli as the full-length protein and as a truncated form missing the N-terminal extension characteristic of mitochondrial targeting. The truncated form possesses NDP kinase activity, whereas the full-length protein is inactive, suggesting that the extension prevents enzyme folding and/or activity. X-ray crystallographic analysis was performed on active truncated Nm23-H4. Like other eukaryotic NDP kinases, it is a hexamer. Nm23-H4 naturally possesses a serine residue at position 129, equivalent to the K-pn mutation of the Drosophila NDP kinase. The x-ray structure shows that the presence of Ser(129) has local structural effects that weaken subunit interactions. Site-directed mutagenesis shows that the serine is responsible for the lability of Nm23-H4 to heat and urea treatment, because the S129P mutant is greatly stabilized. Examination of human embryonic kidney 293 cells transfected with green fluorescent protein fusions by confocal microscopy shows a specific mitochondrial localization of Nm23-H4 that was also demonstrated by Western blot analysis of subcellular fractions of these cells. Import into mitochondria is accompanied by cleavage of the N-terminal extension that results in NDP kinase activity. Submitochondrial fractionation indicates that Nm23-H4 is associated with mitochondrial membranes, possibly to the contact sites between the outer and inner membranes.  相似文献   

5.
A cDNA clone (TAB2) encoding a nucleoside diphosphate (NDP) kinase has been isolated from a tomato (Lycopersicon esculentum Mill. cv. Ailsa Craig) cDNA library. The clone is 590 bp long and exhibits a high degree of sequence identity with spinach NDP kinases I and II, Pisum sativum NDP kinase I, Arabidopsis thaliana NDP kinase, Drosophila melanogaster NDP kinase, Dictyostelium discoideum NDP kinase and human Nm 23-H1 and Nm23-H2. Northern analysis has revealed that the mRNA encoded by TAB2 is up-regulated in both leaf and stem tissue in response to wounding. The increase is apparent within 1 h of wounding and is not further elevated by application of ethylene. Southern blot analysis indicates that TAB2 is a member of a small gene family.  相似文献   

6.
Microtubules reassembled in vitro from chick brain contain significant nucleosidediphosphate (NDP) kinase activity (EC 2.7.4.6) although the specific activity decreases with successive cycles of reassembly. However, while the recovery of microtubule protein, as a function of initial protein concentration, exhibits a critical concentration below which there is no polymerisation, the recovery of NDP kinase activity is, at low initial protein concentrations, directly proportional to the initial protein content indicating that microtubule protein and the kinase activity are independently recovered. This was confirmed by pelleting the reassembled microtubules through a sucrose cushion: the specific activity of the pelleted microtubules was reduced by approximately 90%. By contrast, when cold-dissociated microtubule protein, which is predominantly in the form of rings, is fractionated on a Biogel A 15 m column the microtubule protein and NDP kinase activity coeluted in the void volume and the specific activity remained constant throughout the ring fraction. Similarly, when microtubules were dissociated in the presence of NDP kinase the enzyme bound to the generated rings. These results suggest that NDP kinase binds preferentially to the rings compared with the microtubules, and a model is proposed to account for the presence of this enzyme in pellets of microtubule protein.  相似文献   

7.
8.
Microtubule protein, prepared by cycles of polymerisation and dissociation, contained a nucleoside diphosphokinase (NDP kinase) activity (EC 2.7.4.6). This activity was not intrinsic to the tubulin dimer or the so-called microtubule-associated proteins. The NDP kinase had the following properties. (1) The enzyme existed in a low-molecular-weight form and in association with the complex of microtubule-associated proteins and tubulin (i.e. multimeric tubulin). (2) The low-molecular-weight species was also formed by dissociation of multimeric tubulin by salt or by removal of microtubule-associated proteins on phosphocellulose. (3) GDP bound to the exchangeable site of multimeric tubulin and also GDP derived from the E site of the tubulin dimer was a substrate for the NDP kinase. (4) The NDP kinase showed a 7-fold increase in activity during ATP-dependent microtubule assembly. On the basis of these properties, it is proposed that microtubule protein contains an NDP kinase specifically associated with tubulin and its functions.  相似文献   

9.
Nucleoside diphosphate kinase (NDK), an enzyme encoded by the Drosophila abnormal wing discs (awd) or human nm23 tumor suppressor genes, generates nucleoside triphosphates from respective diphosphates. We demonstrate that NDK regulates synaptic vesicle internalization at the stage where function of the dynamin GTPase is required. awd mutations lower the temperature at which behavioral paralysis, synaptic failure, and blocked membrane internalization occur at dynamin-deficient, shi(ts), mutant nerve terminals. Hypomorphic awd alleles display shi(ts)-like defects. NDK is present at synapses and its enzymatic activity is essential for normal presynaptic function. We suggest a model in which dynamin activity in nerve terminals is highly dependent on NDK-mediated supply of GTP. This connection between NDK and membrane internalization further strengthens an emerging hypothesis that endocytosis, probably of activated growth factor receptors, is an important tumor suppressor activity in vivo.  相似文献   

10.
H Hama  N Almaula  C G Lerner  S Inouye  M Inouye 《Gene》1991,105(1):31-36
The gene encoding nucleoside diphosphate (NDP) kinase of Escherichia coli was identified by polymerase chain reaction using oligodeoxyribonucleotide primers synthesized on the basis of consensus sequences from Myxococcus xanthus and various eukaryotic NDP kinases. The gene (ndk), mapped at 54.2 min on the E. coli chromosome, was cloned and sequenced. The E. coli NDP kinase was found to consist of 143 amino acid residues that are 57, 45, 45, 42, 43, and 43% identical to the M. xanthus, Dictyostelium discoideum, Drosophila melanogaster, mouse, rat, and human enzymes, respectively. The ndk gene appears to be in a monocistronic operon and, when cloned in a pUC vector, NDP kinase was overproduced at a level of approx. 25% of total cellular proteins. The protein could be labeled with [gamma-32P]ATP and migrated at a 16.5 kDa when electrophoresed in SDS-polyacrylamide gel, which is in good agreement with the Mr of the purified E. coli NDP kinase previously reported.  相似文献   

11.
The microtubule-associated nucleoside diphosphate kinase   总被引:7,自引:0,他引:7  
Microtubule protein prepared by cycles of assembly-disassembly contains a nucleoside diphosphate kinase (NDP kinase) activity. We have isolated the NDP kinase responsible for this activity from twice-polymerized bovine brain microtubule protein by a five-step chromatographic procedure. The molecular weight of this enzyme was 103,000 +/- 7,000 daltons as determined by sedimentation equilibrium experiments performed with a Beckman Airfuge. A doublet of subunit bands with molecular masses of about 18,000 daltons was detected by silver staining after gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis of this preparation. We conclude that the enzyme is a hexamer, although we cannot identify the mix of subunits. We were able to isolate only nanogram quantities of this enzyme, too little for extensive studies, so we isolated the enzyme directly from bovine brain without a preliminary microtubule protein isolation. The whole-brain NDP kinase was isolated by the same chromatographic steps as the enzyme from microtubule protein preparations. Both enzymes had a doublet of subunits at the same molecular weights and both were the same isozyme, chromatofocusing at a pH of 8.0. Both enzymes had similar kinetic properties and similar thermal inactivation profiles. These similar properties of the two enzymes suggest that they are identical. Both subunits of NDP kinase could be reversibly phosphorylated by ATP. Phosphorylation of the native enzyme created multiple, more acidic forms that retained activity. The isolation of this NDP kinase, which can copurify with microtubule protein through cycles of assembly-disassembly, will facilitate future studies on the role of this enzyme in the mechanism and regulation of microtubule assembly.  相似文献   

12.
Tubulin strictly requires GTP for its polymerization. Nevertheless, microtubule assembly can be observed in the presence of ATP as the only nucleotide triphosphate, due to the nucleoside diphosphate kinase (NDP kinase) present in microtubule preparations, and which phosphorylates the GDP into GTP. We have purified this enzyme from pig brain to homogeneity, and shown that its relative mass is close to 100 000 in its native state, and 17 000 under denaturing conditions. Therefore it is probably a hexamer, as previously shown for the enzyme from other sources, and also presents a microheterogeneity, with the major isoforms between pI 5.0 and 6.0. The enzyme is transiently phosphorylated during catalysis, as expected within a ping-pong bi-bi mechanism. The effect of the NDP kinase on pure tubulin polymerization was studied: in the presence of NDP kinase, the lag time observed in the kinetics of microtubule assembly was shorter and the final extent of assembly was unchanged. The effect of the enzyme was observed at enzyme concentrations 900-fold lower than tubulin concentration, which shows that the NDP kinase acts catalytically. Kinetic data show that the catalytic effect of the NDP kinase is faster than the rate of nucleotide exchange on tubulin under the same conditions. This result demonstrates that the tubulin-GDP complex itself is a substrate for the enzyme, which may indicate that the GDP bound to tubulin at the E site is exposed on the surface of dimeric tubulin.  相似文献   

13.
A new murine cDNA of nm23/NDP kinase was isolated. A RT-PCR product was obtained from the normal mouse liver mRNA with primers designed for the human nm23-H2 gene. The product was used as a probe to screen a cDNA library from the murine melanoma cell line, B16, and two clones containing the entire open reading frame were obtained. It was predicted that the DNA sequence encoded 152 amino acids which was 98% identical to the nm23-H2 protein. The entire nm23-M1 and -M2 gene-coding regions were translated as fusion proteins with a glutathione S-transferase. These fusion proteins displayed NDP kinase activities.  相似文献   

14.
Nucleoside diphosphate kinase of Drosophila, recently identified as the product of the awd gene, is essential for larval development. The conditional lethal mutation Killer of prune maps to the same gene. We purified the nucleoside diphosphate kinases from wild-type and mutant larvae by a simple procedure involving affinity chromatography on blue Sepharose. Both proteins are purified as hexamers in their native state. The mutant protein, which carries a serine instead of proline at position 97, has structural properties and catalytic efficiency that are very similar to the wild-type protein. However, the mutant protein has a much lower stability to denaturation by heat and urea. Following dilution of urea with buffer the urea-denaturated mutant nucleoside diphosphate kinase accumulates as folded monomers and cannot recover its quaternary structure and enzymatic activity. In contrast, the wild-type enzyme recovers hexameric structure and activity. This suggests that the mutation affects the folding/assembly pathway without affecting the function of the mature protein once folded and assembled into the mature hexameric structure.  相似文献   

15.
Rikhy R  Ramaswami M  Krishnan KS 《Genetics》2003,165(3):1243-1253
Rapidly reversible, temperature-sensitive (ts) paralytic mutants of Drosophila have been useful in delineating immediate in vivo functions of molecules involved in synaptic transmission. Here we report isolation and characterization of orangi (org), an enhancer of shibire (shi), a ts paralytic mutant in Drosophila dynamin. org is an allele of the stress sensitive B (sesB) locus that encodes a mitochondrial adenine nucleotide translocase (ANT) and results in a unique ts paralytic behavior that is accompanied by a complete loss of synaptic transmission in the visual system. sesB(org) reduces the restrictive temperature for all shi(ts) alleles tested except for shi(ts1). This characteristic allele-specific interaction of sesB(org) with shi is shared by abnormal wing discs (awd), a gene encoding nucleoside diphosphate kinase (NDK). sesB(org) shows independent synergistic interactions, an observation that is consistent with a shared pathway by which org and awd influence shi function. Genetic and electrophysiological analyses presented here, together with the observation that the sesB(org) mutation reduces biochemically assayed ANT activity, suggest a model in which a continuous mitochondrial ANT-dependent supply of ATP is required to sustain NDK-dependent activation of presynaptic dynamin during a normal range of synaptic activity.  相似文献   

16.
The eye color mutant prune (pn) of Drosophila melanogaster shows a lethal interaction with the Killer-of-prune (K-pn) allele of the abnormal wing disc (awd) locus. The awd gene is the Drosophila homologue of the mammalian tumor metastasis gene nm23, and it has been postulated that pn encodes a protein with similarity to a GAP, a GTPase-activating protein. Such GAPs potentially control Ras-like proteins, which are important molecular switches. However, there is only a low sequence homology with the genes for human GAP and neurofibromatosis (NF1), and with yeast IRA1 and IRA2, and there is no evidence for the functional significance of this homologization. I now show that pn mutations lower the concentrations of larval pteridines, and that this phenomenon is enhanced by two orders of magnitude by the lethal interaction between pn and awdK-pn. These gradual effects on the pteridin concentrations indicate a corresponding drop of the pools of free GTP, and favor the involvement of GTP-binding proteins. In addition, cytology reveals a considerable hypertrophy of the neuroglia and the perineurium of the larval brain. Furthermore, the lymph glands of the larvae are highly abnormal and form melanotic (pseudo)tumors upon ageing of the larvae. These pseudotumors consist predominantly of lamellocytes which are part of the cellular defence system of Drosophila. These observations most likely indicate hyperactivity of a Ras-like protein which becomes manifest in cell types equivalent to the cell types affected by human neurofibromatosis (NF1). Thus, it is very suggestive to regard the synthetic lethal system prune/Killer-of-prune as the Drosophila model for human neurofibromatosis.  相似文献   

17.
The human DRnm23 gene was identified by differential screening of a cDNA library obtained from chronic myeloid leukaemia-blast crisis primary cells. The over-expression of this gene inhibits differentiation and induces the apoptosis of myeloid precursor cell lines. We overproduced in bacteria a truncated form of the encoded protein lacking the first 17 N-terminal amino acids. This truncated protein was called nucleoside diphosphate (NDP) kinase CDelta. NDP kinase CDelta had similar kinetic properties to the major human NDP kinases A and B, but was significantly more stable to denaturation by urea and heat. Analysis of denaturation by urea, using size exclusion chromatography, indicated unfolding without the dissociation of subunits, whereas renaturation occurred via a folded monomer. The stability of the protein depended primarily on subunit interactions. Homology modelling of the structure of NDP kinase CDelta, based on the crystal structure of NDP kinase B, indicated that NDP kinase CDelta had several additional stabilizing interactions. The overall structure of the two enzymes appears to be identical because NDP kinase CDelta readily formed mixed hexamers with NDP kinase A. It is possible that mixed hexamers can be observed in vivo.  相似文献   

18.
Nucleoside diphosphate kinase has been shown to play a role in proliferation and development. Microtubules have been evoked as a possible target of NDP kinase action; in particular it was proposed that NDP kinase could regulate the cellular pool of polymerizable GTP-tubulin by direct phosphorylation of tubulin bound GDP. We show that this reaction does not occur in vitro and also that NDP kinase does not bind to microtubules both in the presence and absence of MAPs. Thus, any possible physiological effect of NDP kinase on microtubule dynamics is exerted only by modulating the concentrations of free guanine nucleotides in the vicinity of microtubules.  相似文献   

19.
Nucleoside-diphosphate (NDP) kinase (NTP:nucleoside-diphosphate phosphotransferase) catalyzes the reversible transfer of gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates through an invariant histidine residue. It has been reported that the high-energy phosphorylated enzyme intermediate exhibits a protein phosphotransferase activity toward the protein histidine kinases CheA and EnvZ, members of the two-component signal transduction systems in bacteria. Here we demonstrate that the apparent protein phosphotransferase activity of NDP kinase occurs only in the presence of ADP, which can mediate the phosphotransfer from the phospho-NDP kinase to the target enzymes in catalytic amounts (approximately 1 nm). These findings suggest that the protein kinase activity of NDP kinase is probably an artifact attributable to trace amounts of contaminating ADP. Additionally, we show that Escherichia coli NDP kinase, like its human homologue NM23-H2/PuF/NDP kinase B, can bind and cleave DNA. Previous in vivo functions of E. coli NDP kinase in the regulation of gene expression that have been attributed to a protein phosphotransferase activity can be explained in the context of NDP kinase-DNA interactions. The conservation of the DNA binding and DNA cleavage activities between human and bacterial NDP kinases argues strongly for the hypothesis that these activities play an essential role in NDP kinase function in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号