首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Photophysical studies have been undertaken to characterize the binding interactions of enantiomers of Ru(phen)3(2+), Ru(DIP)3(2+), and racemic Ru(bpy)2dppz2+ (where phen = 1,10-phenanthroline, DIP = 4,7-diphenylphenanthroline, and dppz = dipyridophenazine) with Z-form poly d(GC). Parallel enhancements in steady state luminescent intensity and a lengthening of luminescent lifetimes are seen for ruthenium enantiomers with Z-DNA as for B-DNA but with enantioselectivities reversed. Greater enhancements are seen for delta-isomers with the right-handed helix but for lambda-isomers with the left-handed helix. Ru(bpy)2dppz2+, an avid intercalator in B-DNA, displays no luminescence free in aqueous solution, but luminesces brightly bound to either B- or Z-poly d(GC). Stern-Volmer quenching studies also support the enantioselective preference in binding to B-DNA by delta-isomers and a reversal with binding to Z-DNA preferentially by the lambda-isomers. Steady state polarization studies indicate a rigid association of the complexes with both B- and Z-DNA on the time-scale of their emission and again with symmetrical enantioselectivities for the left and right-handed helices. Given the well characterized intercalative association of the complexes with B-DNA, the parallel results seen here with Z-DNA point strongly to a comparable intercalative association with the Z-form helix. That molecules may interact with Z-DNA through intercalation has not been demonstrated previously and now requires consideration in describing the range of interactions of small molecules and proteins with Z-DNA.  相似文献   

2.
A ruthenium coordination complex, incorporating two highly extended pi-systems DIP and two carboxylic groups: [Ru(DIP)2(L-L)]2+ where DIP=4,7-diphenyl-1,10-phenanthroline and L-L=4,4'-dicarboxy-2,2'-bipyridine, is found to be of biological interest. It constitutes an effective nuclear DNA dye for living cells: fluorescent, permeant, biocompatible, high Stokes shift. These features are commented in terms of hydrophobicity and DNA binding. In addition, this complex is shown to internalize a plasmid carrying the enhanced green fluorescent protein (EGFP) gene. Positive results are obtained for gene expression, which is related to condensation of the DNA by this ruthenium agent. This opens up an innovative transfection route based on metal complexes.  相似文献   

3.
Puckett CA  Barton JK 《Biochemistry》2008,47(45):11711-11716
Transition metal complexes provide a promising avenue for the design of therapeutic and diagnostic agents, but the limited understanding of their cellular uptake is a roadblock to their effective application. Here, we examine the mechanism of cellular entry of a luminescent ruthenium(II) polypyridyl complex, Ru(DIP) 2dppz (2+) (where DIP = 4,7-diphenyl-1,10-phenanthroline and dppz = dipyridophenazine), into HeLa cells, with the extent of uptake measured by flow cytometry. No diminution of cellular uptake is observed under metabolic inhibition with deoxyglucose and oligomycin, indicating an energy-independent mode of entry. The presence of organic cation transporter inhibitors also does not significantly alter uptake. However, the cellular internalization of Ru(DIP) 2dppz (2+) is sensitive to the membrane potential. Uptake decreases when cells are depolarized with high potassium buffer and increases when cells are hyperpolarized with valinomycin. These results support passive diffusion of Ru(DIP) 2dppz (2+) into the cell.  相似文献   

4.
The electrogenerated chemiluminescence (ECL) that results from the oxidation of tris(1,10-phenanthroline)ruthenium(II), at a gold electrode in the presence of oxalate, was used to investigate the interaction of the Ru(II) chelate with calf thymus DNA. The decrease in ECL emission from the excited state, Ru(phen)3(2+*), in the presence of DNA, is ascribed to binding to binding of the chelate to the DNA strand. An ECL titration of the metal complex with DNA allowed determination of the equilibrium constant (K) and binding-site size (s) for association of Ru(phen)3(2+), under the assumption that only the free metal complex contributes to the observed emission. In 25 mM Na2C2O4, 2 mM phosphate buffer, pH 5, 0.05% Tween-20, 0.05% Triton X-100, regression based on the McGhee/von Hippel model, which accounts for free base pair gaps between binding sites, yielded K = 8.1 (+/- 0.2) x 10(3) M-1 and s = 4 bp.  相似文献   

5.
The chiral complex tris (diphenylphenanthroline) cobalt (III) (Co(DIP)3(3+) provides a photoreactive probe for chromatin structure in mammalian cells. The complex, which upon photoactivation cleaves DNA in a conformation-specific fashion in vitro, is shown also to cleave DNA in vivo upon irradiation with ultraviolet light (greater than 300 nm). delta- and lambda-Co (DIP)3(3+) isomers are taken up efficiently into cultured Chinese hamster ovary cells and concentrate within cell nuclei. In the absence of light the complexes are toxic to the cells (10% survival at approximately 300 nM), but after ultraviolet irradiation, the toxicity is markedly (greater than 10-fold) increased. The synergism between irradiation and Co(DIP)3(3+) administration may lie in photoreactions with DNA elicited by the cobalt complex. Alkaline sucrose gradient analysis of DNA from cells exposed to lambda-Co(DIP)3(3+) and irradiation show single-stranded DNA fragmentation under conditions where little cleavage is seen in cells either incubated with lambda-Co(DIP)3(3+) or irradiated with greater than 300 nm A ultraviolet light. Cellular DNA is cleaved with lower efficiency than naked DNA, likely due to decreased accessibility of sites in vivo. Hybridization of fragments obtained from the alkaline sucrose gradients to a probe specific for the amplified dihydrofolate reductase gene reveals a similar distribution of dhfr sequences and total DNA, indicating that the family of conformations recognized by lambda-Co(DIP)3(3+) are dispersed throughout the genome.  相似文献   

6.
Photoinduced cleavage reactions by the rhodium complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III) [Rh(DIP)(3)(3+)] with three RNA hairpins, r(GGGGU UCGCUC CACCA) (16 nucleotide, tetraloop(Ala2)), r(GGGGCUAUAGCUCUAGCUC CACCA) (24 nucleotide, microhelix(Ala)), and r(GGCGGUUAGAUAUCGCC) (17 nucleotide, 790 loop), and full-length (1542 nucleotide) 16S rRNA from Escherichia coli were investigated. The cleavage reactions were monitored by gel electrophoresis and the sites of cleavage by Rh(DIP)(3)(3+) were determined by comparisons with chemical or enzymatic sequencing reactions. In general, RNA backbone scission by the metal complex was induced at G.U mismatches and at exposed G residues. The cleavage activity was observed on the three small RNA hairpins as well as on the isolated 1542-nucleotide ribosomal RNA.  相似文献   

7.
The DNA binding of iron(II) mixed-ligand complexes containing 1,10-phenanthroline(phen) and 4,7-diphenyl-1,10-phenanthroline(dip), [Fe(phen)(3)](2+), [Fe(phen)(2)(dip)](2+) and [Fe(phen)(dip)(2)](2+) has been characterized by spectrophotometric titration and melting temperature measurements. The salt concentration dependence of the binding constant has allowed us to dissect the DNA-binding constant and free energy change of each iron(II) complex into the nonelectrostatic and polyelectrolyte contributions. A comparison of the nonelectrostatic components in the binding free energy changes among iron(II) complexes has made it possible to rigorously evaluate the contribution of the ligand substituents to the DNA-binding event. The peripheral substitution of phen by two phenyl groups increases the nonelectrostatic binding constant of the iron(II) complex more than 20 times, which is equivalent to approximately 7.5 kJ mol(-1) of more favorable contribution to the DNA binding. In general, the iron(II) complexes studied have higher affinity towards the more facile A-T sequence than the G-C sequence. This preferential binding may be attributed to the steric effect induced by the ancillary part of the ligands in the course of DNA binding. The binding of disubstituted iron(II) complex to DNA is quite strong as reflected in the modest increase in the denaturation temperature (T(m)) of double helical DNA upon the interaction with the iron(II) complex.  相似文献   

8.
Absorption spectroscopy and circular dichroism (CD) have been used to characterize the DNA binding of [Fe(phen)3]2+, [Fe(phen)2(DIP)]2+ and [Fe(phen)(DIP)2]2+ where phen and DIP stand for 1,10-phenanthroline and 4,7-diphenyl-1,10-phenanthroline, respectively. Both [Fe(phen)3]2+ and [Fe(phen)2(DIP)]2+ bind weakly to calf thymus DNA (CT-DNA) in an electrostatic mode, while [Fe(phen)(DIP)2]2+ binds more strongly to CT-DNA, possibly in an intercalation mode. The hypochromicity, red shift and Kb increase in the order [Fe(phen)3]2+ < [Fe(phen)2(DIP)]2+ < [Fe(phen)(DIP)2]2+ in accordance with the increase in size and hydrophobicity of the iron(II) complexes. The thermodynamic parameters obtained suggest that the DNA binding of both [Fe(phen)3]2+ and [Fe(phen)2(DIP)]2+ is entropically driven, while that of [Fe(phen)(DIP)2]2+ is enthalpically driven. A strong CD spectrum in the UV and visible region develops upon addition of CT-DNA into the racemate solution of each iron(II) complex (Pfeiffer effect). This has revealed that a shift in diastereomeric inversion equilibrium takes place in the solution to yield an excess of one of the DNA-complex diastereomers. The striking resemblance of the CD spectral profiles to those of the pure delta-enantiomer indicates that the delta-enantiomer of the iron(II) complexes is preferentially bound to CT-DNA. The mechanism of the development of Pfeiffer CD is proposed on the basis of kinetic studies on the DNA binding of the racemic iron(II) complexes.  相似文献   

9.
A series of ruthenium(II) mixed ligand complexes of the type [Ru(NH(3))(4)(L)](2+), where L=imidazo[4,5-f][1,10]phenanthroline (ip), 2-phenylimidazo[4,5-f][1,10]phenanthroline (pip), 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline (hpip), 4,7-diphenyl-1,10-phenanthroline (dip), naphtha[2,3-a]dipyrido[3,2-h:2',3'-f]phenazine-5,18-dione (qdppz), 5,18-dihydroxynaphtho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine (hqdppz), have been isolated and characterized. The interaction of these complexes with calf thymus DNA (CT DNA) has been explored by using absorption, emission, and circular dichroic spectral methods, thermal denaturation studies and viscometry. All these studies suggest the involvement of the modified phenanthroline 'face' rather than the ammonia 'face' of the complexes in DNA binding. An intercalative mode of DNA binding, which involves the insertion of the modified phenanthroline ligands in between the base pairs, is suggested. The results from absorption spectral titration and circular dichroism (CD), thermal denaturation and viscosity experiments indicate that the qdppz and hqdppz complexes (K(b) approximately 10(6) and Delta T(m)=11-13 degrees C) bind more avidly than the ip, pip and hpip complexes (K(b) approximately 10(5), Delta T(m)=6-8 degrees C). Intramolecular hydrogen bonding in the hpip and hqdppz complexes increases the surface area of the intercalating diimines and enhances the DNA binding affinity substantially. The ammonia co-ligands of the complexes are possibly involved in hydrogen bonding with the intrastrand nucleobases to favour intercalation of the extended aromatic ligands. Circular dichroism spectral studies reveal that all the complexes effect certain structural changes on DNA duplex; [Ru(NH(3))(4)(ip)](2+) induces a B to A transition while [Ru(NH(3))(4)(qdppz)](2+) a B to Psi conformational change on CT DNA. Cleavage efficiency of the complexes were determined using pBR322 supercoiled plasmid DNA. All the complexes, except hqdppz complex, promote the cleavage of supercoiled plasmid (form I) to relaxed circular form (form II).  相似文献   

10.
C S Chow  J K Barton 《Biochemistry》1992,31(24):5423-5429
The coordination complex tris(4,7-diphenyl-1,10-phenanthroline)rhodium(III) [Rh(DIP)3(3+)], which promotes RNA cleavage upon photoactivation, has been shown to target specifically guanine-uracil (G-U) mismatches in double-helical regions of folded RNAs. Photoactivated cleavage by Rh(DIP)3(3+) has been examined on a series of RNAs that contain G-U mismatches, yeast tRNA(Phe) and yeast tRNA(Asp), as well as on 5S rRNAs from Xenopus oocytes and Escherichia coli. In addition, a "microhelix" was synthesized, which consists of seven base pairs of the acceptor stem of yeast tRNA(Phe) connected by a six-nucleotide loop and contains a mismatch involving residues G4 and U69. A U4.G69 variant of this sequence was also constructed, and cleavage by Rh(DIP)3(3+) was examined. In each of these cases, specific cleavage is observed at the residue which lies to the 3'-side of the wobble-paired U; some cleavage by the rhodium complex is also evident in several structured RNA loops. The remarkable site selectivity for G-U mismatches within double-helical regions is attributed to shape-selective binding by the rhodium complex. This binding furthermore depends upon the orientation of the G-U mismatch, which produces different stacking interactions between the G-U base pair with the Watson-Crick base pair following it on the 5'-side of U compared to the Watson-Crick pair preceding it on the 3'-side of U. Rh(DIP)3(3+) therefore serves as a unique probe of G-U mismatches and may be useful both as a model and in probing RNA-protein interactions as well as in identifying G-U mismatches within double-helical regions of folded RNAs.  相似文献   

11.
The binding of the ruthenium(II) complexes of [Ru(bpy)2(CAIP)]Cl2 and [Ru(bpy)2(HCIP)]Cl2 (where bpy=2,2'-bipyridine, CAIP=4-carboxyl-imidado[4,5-f][1,10]-phenanthroline, HCIP=3-hydroxyl-4-carboxyl-imidado[4,5-f][1,10]-phenanthroline) to calf thymus DNA (ct-DNA) has been investigated with UV-visible and emission spectroscopy, steady-state emission quenching, and viscosity measurements. The experimental results indicate that the two complexes bind to ct-DNA through an intercalative mode and [Ru(bpy)2(HCIP)]2+ intercalates into DNA more deeply than [Ru(bpy)2(CAIP)]2+ does.  相似文献   

12.
The interactions of a metal complex [Ru(phen)(2)PMIP](2+) {Ru=ruthenium, phen=1,10-phenanthroline, PMIP=2-(4-methylphenyl)imidazo[4,5-f]1,10-phenanthroline} with yeast tRNA and calf thymus DNA (CT DNA) have been investigated comparatively by UV-vis spectroscopy, fluorescence spectroscopy, viscosity measurements, isothermal titration calorimetry (ITC), as well as equilibrium dialysis and circular dichroism (CD). Spectroscopic studies together with ITC and viscosity measurements indicate that both binding modes of the Ru(II) polypyridyl complex to yeast tRNA and CT DNA are intercalation and yeast tRNA binding of the complex is stronger than CT DNA binding. ITC experiments show that the interaction of the complex with yeast tRNA is driven by a moderately favorable enthalpy decrease in combination with a moderately favorable entropy increase, while the binding of the complex to CT DNA is driven by a large favorable enthalpy decrease with a less favorable entropy increase. The results from equilibrium dialysis and CD suggest that both interactions are enantioselective and the Delta enantiomer of the complex may bind more favorably to both yeast tRNA and CT DNA than the Lambda enantiomer does, and that the complex is a better candidate for an enantioselective binder to yeast tRNA than to CT DNA. Taken together, these results indicate that the structures of nucleic acids have significant effects on the binding behaviors of metal complexes.  相似文献   

13.
In order to examine whether chiral metal complexes can be used to discriminate between right- and left-handed DNA conformational states we have studied the enantioselective interactions of Fe(phen)3(2+) and Ru(phen)3(2+) (phen = 1,10-phenanthroline) with poly(dGm5dC) under B- and Z-form conditions. With the inversion-labile Fe(phen)3(2+), enantioselectivity leads to shifts in the diastereomeric binding equilibria. This effect, known as the "Pfeiffer effect" (1-4), is monitored as slowly emerging circular dichroism of the solution, corresponding to a net excess of the favoured enantiomer. With Ru(phen)3(2+), which is stable to intramolecular inversion, the difference in DNA-binding strengths of the enantiomers results in an excess of the less favoured enantiomer in the bulk solution. This excess is detected in the dialysate of the DNA/metal complex solution. With both complexes we find that the delta-enantiomer is favoured when the polynucleotide adopts the B-form, as previously shown, but also when it initially adopts the Z-form conformational state. This observation, together with evidence from UV-circular dichroism and binding data, indicates that the binding of these metal complexes induces a Z- to B-form transition in Z-form poly(dGm5dC). Consequently, neither of the studied chiral DNA-binders can easily be used to discriminate the DNA handedness.  相似文献   

14.
A new polypyridyl ligand MPPIP {MPPIP=2-(3'-phenoxyphenyl)imidazo[4,5-f]-[1,10]phenanthroline} and its ruthenium(II) complexes, [Ru(bpy)(2)MPPIP](2+) (1) (bpy=2,2'-bipyridine) and [Ru(phen)(2)MPPIP](2+) (2) (phen=1,10-phenanthroline) have been synthesized and characterized. The binding of the two complexes to calf thymus DNA (CT-DNA) has been investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The results suggest that both complexes bind to CT-DNA through intercalation, and enantioselectively interact with CT-DNA in a way. However, complex 2 is a much better candidate as an enantioselective binder to CT-DNA than complex 1. When irradiated at 365nm, both complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   

15.
A series of enantiomerically pure polypyridyl ruthenium(II) complexes, delta- and lambda-[Ru(bpy)2 (HPIP)](PF6)2 (delta-1 and lambda-1; bpy=2,2'-bipyridine, HPIP = 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline), delta and lambda-[Ru(bpy)2(HNAIP)](PF6)2 (delta-2 and lambda-2; HNAIP = 2-(2-hydroxy-1-naphthyl)imidazo[4,5-f][1,10]phenanthroline), delta- and lambda-[Ru(bpy)2 (HNOIP)](PF6)2 (delta-3 and lambda-3; HNOIP = 2-(2-hydroxy-5-nitrophenyl)imidazo[4,5-f][1,10]phenanthroline), and delta- and lambda-[Ru(bpy)2(DPPZ)](PF6)2 (delta-4 and lambda-4; DPPZ= dipyridophenazine), have been synthesized. Binding behavior of these chiral complexes to calf thymus DNA (CT-DNA) has been investigated by electronic absorption, steady-state emission, and circular dichroism spectroscopies, as well as by viscosity measurements and equilibrium dialysis binding studies. Several points came from the results. (1) The DNA-binding properties were distinctly different for the [Ru(bpy)2L]2+ (L=HPIP, HNAIP, HNOIP) series of ruthenium(II) complexes, which indicates that the photophysical behavior of the complexes on binding to DNA can be modulated through ligand design. (2) Different binding rates of individual enantiomers of complexes 1 and 4 to DNA were observed through dialysis experiments. The lambda enantiomer bound more rapidly than the lambda enantiomer and their different intercalative binding geometries were suggested to be responsible. (3) Both delta-2 and lambda-2 bound weakly to CT-DNA; delta-2 may bind through a partial intercalation mode, whereas lambda-2 may bind in the DNA groove. (4) There was no noticeable enantioselectivity for complexes 1, 3, and 4 on binding to CT-DNA. Both of their enantiomers can intercalate into DNA base pairs. It is noted that delta-3 and lambda-3 exhibited almost identical spectral changes on addition of CT-DNA, and a similar binding manner of the isomers to the double helix was proposed.  相似文献   

16.
Rh(DIP)3(3+): a shape-selective metal complex which targets cruciforms.   总被引:2,自引:2,他引:0  
The coordination complex tris(4,7-diphenylphenanthroline)rhodium(III), Rh(DIP)3(3+), binds to and, upon photoactivation, cleaves both DNA strands near the base of a DNA cruciform. Sites of photoinduced double-stranded DNA cleavage by the rhodium complex map to regions containing cruciforms on closed circular pBR322, pColE1 and phi X174 (replicative form) DNAs. Neither cleavage nor binding by the metal complex, assayed using S1 nuclease, is found on the linear plasmid which lacks the extruded cruciform. High resolution mapping experiments reveal that Rh(DIP)3(3+) cleaves at a specific AT-rich site neighboring the stem of the minor cruciform on pBR322. The primary site of cleavage is found at position 3238 on the 3'-strand and 3250 on the 5'-strand and is remarkably specific. The pattern of cleavage, to one side only of the cruciform stem, indicates an asymmetry in the cruciform structure recognized by the complex. These results suggest that Rh(DIP)3(3+) may provide a useful reagent to probe cruciform sites. In addition, the high degree of specificity found in targeting the cruciform structure with this simple metal complex underscores the utility of shape-selection for the recognition of specific sites on a DNA strand.  相似文献   

17.
Four new mixed-ligand complexes, namely [Co(phen)(2)(qdppz)](3+), [Ni(phen)(2)(qdppz)](2+), [Co(phen)(2)(dicnq)](3+) and [Ni(phen)(2)(dicnq)](2+) (phen=1,10-phenanthroline, qdppz=naptho[2,3-a]dipyrido[3,2-H:2',3'-f]phenazine-5,18-dione and dicnq=dicyanodipyrido quinoxaline), were synthesized and characterized by FAB-MS, UV/Vis, IR, 1H NMR, cyclic voltammetry and magnetic susceptibility methods. Absorption and viscometric titration as well as thermal denaturation studies revealed that each of these octahedral complexes is an avid binder of calf-thymus DNA. The apparent binding constants for the dicnq- and qdppz-bearing complexes are in the order of 10(4) and >10(6) M(-1), respectively. Based on the data obtained, an intercalative mode of DNA binding is suggested for these complexes. While both the investigated cobalt(III) complexes and also [Ni(phen)(2)(qdppz)](2+) affected the photocleavage of DNA (supercoiled pBR 322) upon irradiation by 360 nm light, the corresponding dicnq complex of nickel(II) was found to be ineffective under a similar set of experimental conditions. The physico-chemical properties as well as salient features involved in the DNA interactions of the cobalt(III) and nickel(II) complexes investigated here were compared with each other and also with the corresponding properties of the previously reported ruthenium(II) analogues.  相似文献   

18.
Molecular modelling and energy minimisation calculations that incorporate solvent effects have been used to investigate the complexation of delta and lambda-[Ru(1,10-phenanthroline]2+ to DNA. The most stable binding geometry for both enantiomers is one in which a phenanthroline chelate is positioned in the major groove. The chelate is partially inserted between neighbouring base pairs, but is not intercalated. For delta, though not for lambda, a geometry with two chelates in the major groove is only slightly less favourable. Minor groove binding is shown to be no more favourable than external electrostatic binding. The optimised geometries of the DNA/[Ru(1,10-phenanthroline]2+ complexes enable published linear dichroism spectra to be used to determine the percentage of each enantiomer in the two most favourable major groove sites. For delta 57 +/- 15% and for lambda 82 +/- 7% of bound molecules are in the partially inserted site.  相似文献   

19.
The new ligand 2-(4-phenoxyphenyl)-1H-imidazo[4,5-f][1,10]phenanthroline (ppip) and its Ru(II) complexes [Ru(2,9-dmp)2(ppip)]2+ (1) and [Ru(4,7-dmp)2(ppip)]2+ (2; 2,9- and 4,7-dmp = 2,9- and 4,7-dimethyl-1,10-phenanthroline, resp.) were synthesized and characterized. The binding properties of the two complexes towards calf-thymus DNA (CT-DNA) in buffered H2O (pH 7.2) were investigated by different spectrophotometric methods and viscosity measurements. Both 1 and 2 strongly bind to CT-DNA by means of intercalation, but with different binding strengths. In contrast to the more tightly bound complex 2, the sterically more-demanding complex 1 showed no fluorescence emission, neither alone nor in the presence of CT-DNA. Our results demonstrate that the position of Me groups on phenanthroline (phen) ancillary ligands significantly affects the overall DNA-recognition propensities of Ru(II)-polypyridyl complexes. Further, the partly resolved complex 2 was shown by circular dichroism (CD) to stereoselectively recognize CT-DNA, in contrast to 1.  相似文献   

20.
A fluorescent glucose biosensor was constructed by immobilizing glucose oxidase on a bamboo inner shell membrane with glutaraldehyde as a cross-linker. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution with a concomitant increase in the fluorescence intensity of an oxygen transducer, tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(Pi) ditetrakis(4-chlorophenyl)borate. The enzyme immobilization, effect of pH, temperature and ionic strength have been studied in detail. The biosensor exhibited repeatable response to a 2.0 mM glucose solution with a relative standard deviation of 3.0% (n = 10). It showed good storage stability and maintained 95% of its initial response after it had been kept at 4 degrees C for 8 months. The biosensor has a linear response range of 0.0-0.6 mM glucose with a detection limit of 58 microM (S/N = 3). Common potential interferants in samples do not pose any significant interference on the response of the glucose biosensor. It was successfully applied to the determination of glucose content in some commercial wines and medical glucose injections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号