首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 873 毫秒
1.
昆虫肠道微生物对其寄主的生长发育、营养代谢、免疫以及农药抗性等方面都发挥着重要作用。为研究斜纹夜蛾Spodoptera litura幼虫肠道细菌的多样性,并为其功能验证做准备,本文利用传统微生物分离纯培养方法从斜纹夜蛾4龄幼虫肠道中共分离鉴定得到10株细菌,分别为属于变形菌门(Proteobacteria)的脱氮假单胞菌(Pseudomonas denitrificans),不动细菌(Acinetobacter sp.),肺炎克雷伯氏菌(Klebsiella pneumoniae)和肠杆菌(Enterobacter sp.);属于厚壁菌门(Firmicutes)的鸡葡萄球菌(Staphylococcus gallinarum),蒙氏肠球菌(Enterococcus mundtii),蜡样芽胞杆菌(Bacillus cereus)和枯草芽胞杆菌(Bacillus subtilis)以及放线菌门(Actinobacteria)的微杆菌(Microbacteriums sp.)和乳酪棒杆菌(Corynebacterium casei)。变形菌门和厚壁菌门是斜纹夜蛾肠道可培养细菌中的优势菌群。功能验证实验表明肠杆菌具备纤维素降解能力,微杆菌具备很强的苯酚降解能力。本研究为未来深入研究斜纹夜蛾肠道微生物的功能提供了方向和菌株材料。  相似文献   

2.
The bacterial composition and distribution in the different gut regions of Camponotus japonicus were investigated using both culture-dependent method and culture-independent method of polymerase chain reaction and denaturing gradient gel electrophoresis (PCR–DGGE). Five different bacterial strains were isolated using culture-dependent method, and they all belong to the phylum Firmicutes, including three genera of bacteria Bacillus, Paenibacillus, and Enterococcus. Bacillus cereus and Enterococcus mundtii were found in the midgut; Paenibacillus sp. was isolated from the hindgut; and the other two Bacillus spp. were isolated from the crop. Twelve distinct DGGE bands were found using PCR–DGGE method, and their sequences blasting analysis shows that they are members of the Proteobacteria and the Firmicutes, respectively, including three genera (Pseudomonas, Candidatus Blochmannia, Fructobacillus) and one uncultured bacterium, in which Pseudomonas was the most dominant bacteria group in all the three gut regions. According to the DGGE profile, the three gut regions had very similar gut communities, and all the DGGE bands were presented in the midgut and hindgut, while just two bands representing Blochmannia were not present in the crop. The results of our study indicate that the gut of C. japonicus harbors several other bacteria besides the obligate endosymbionts Blochmannia, and more work should be carried on to verify if they are common in the guts of other Camponotus ants.  相似文献   

3.
Abstract The digestion of cellulose by fungus-growing termites involves a complex of different organisms, such as the termites themselves, fungi and bacteria. To further investigate the symbiotic relationships of fungus-growing termites, the microbial communities of the termite gut and fungus combs of Odontotermes yunnanensis were examined. The major fungus species was identified as Termitomyces sp. To compare the micro-organism diversity between the digestive tract of termites and fungus combs, four polymerase chain reaction clone libraries were created (two fungus-targeted internal transcribed spacer [ITS]– ribosomal DNA [rDNA] libraries and two bacteria-targeted 16S rDNA libraries), and one library of each type was produced for the host termite gut and the symbiotic fungus comb. Results of the fungal clone libraries revealed that only Termitomyces sp. was detected on the fungus comb; no non-Termitomyces fungi were detected. Meanwhile, the same fungus was also found in the termite gut. The bacterial clone libraries showed higher numbers and greater diversity of bacteria in the termite gut than in the fungus comb. Both bacterial clone libraries from the insect gut included Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, Nitrospira, Deferribacteres, and Fibrobacteres, whereas the bacterial clone libraries from the fungal comb only contained Firmicutes, Bacteroidetes, Proteobacteria, and Acidobacteris.  相似文献   

4.
The gut bacterial community from four species of feral locusts and grasshoppers was determined by denaturing gradient gel electrophoresis (DGGE) analysis of bacterial 16S rRNA gene fragments. The study revealed an effect of phase polymorphism on gut bacterial diversity in brown locusts from South Africa. A single bacterial phylotype, consistent with Citrobacter sp. dominated the gut microbiota of two sympatric populations of Moroccan and Italian locusts in Spain. There was evidence for Wollbachia sp. in the meadow grasshopper caught locally in the UK. Sequence analysis of DGGE products did not reveal evidence for unculturable bacteria and homologies suggested that bacterial species were principally Gammaproteobacteria from the family Enterobacteriaceae similar to those recorded previously in laboratory reared locusts.  相似文献   

5.
椰子织蛾幼虫肠道细菌的初步分离鉴定及功能分析   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的] 研究椰子织蛾幼虫肠道微生物的种类和功能,以揭示其消化利用寄主老叶的机制。[方法] 采用传统微生物分离培养技术分离培养肠道细菌,用16S rRNA基因序列分析的方法鉴定菌株,采用透明圈染色法对所得菌株进行功能性验证。[结果] 基因序列检测对比鉴定得到9种可培养细菌菌株,主要属于变形菌门和厚壁菌门以及放线菌门;功能性验证结果表明,伯克霍尔德氏菌、解淀粉芽孢杆菌、贝莱斯芽孢杆菌、蜡样芽孢杆菌菌株具有纤维素降解酶,寒气玫瑰单胞菌、解淀粉芽孢杆菌含木聚糖降解酶。[结论] 椰子织蛾肠道中存在可培养的具有降解纤维素及木聚糖能力的细菌,这些细菌可能有助于椰子织蛾取食消化椰子等老叶,研究所获得的肠道微生物菌株也为后续研究该虫与环境的关系及相关菌株应用于农业、能源、环保价值的探索提供帮助。  相似文献   

6.
Flesh flies of the genus Sarcophaga (Diptera: Sarcophagidae) are carrion‐breeding, necrophagous insects important in medical and veterinary entomology as potential transmitters of pathogens to humans and animals. Our aim was to analyse the diversity of gut‐associated bacteria in wild‐caught larvae and adult flesh flies using culture‐dependent and culture‐independent methods. Analysis of 16S rRNA gene sequences from cultured isolates and clone libraries revealed bacteria affiliated to Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes in the guts of larval and adult flesh flies. Bacteria cultured from larval and adult flesh fly guts belonged to the genera Acinetobacter, Bacillus, Budvicia, Citrobacter, Dermacoccus, Enterococcus, Ignatzschineria, Lysinibacillus, Myroides, Pasteurella, Proteus, Providencia and Staphylococcus. Phylogenetic analysis showed clone sequences of the genera Aeromonas, Bacillus, Bradyrhizobium, Citrobacter, Clostridium, Corynebacterium, Ignatzschineria, Klebsiella, Pantoea, Propionibacterium, Proteus, Providencia, Serratia, Sporosarcina, Weissella and Wohlfahrtiimonas. Species of clinically significant genera such as Ignatzschineria and Wohlfahrtiimonas spp. were detected in both larvae and adult flesh flies. Sequence analysis of 16S rRNA gene libraries supported culture‐based results and revealed the presence of additional bacterial taxa. This study determined the diversity of gut microbiota in flesh flies, which will bolster the ability to assess microbiological risk associated with the presence of these flies. The present data thereby establish a platform for a much larger study.  相似文献   

7.
Carrion beetles, Nicrophorus vespilloides, are reared on decomposing carrion where larvae are exposed to high populations of carcass‐derived bacteria. Larvae do not become colonized with these bacteria but instead are colonized with the gut microbiome of their parents, suggesting that bacteria in the beetle microbiome outcompete the carcass‐derived species for larval colonization. Here, we test this hypothesis and quantify the fitness consequences of colonization with different bacterial symbionts. First, we show that beetles colonized by their endogenous microbiome produce heavier broods than those colonized with carcass‐bacteria. Next, we show that bacteria from the endogenous microbiome, including Providencia rettgeri and Morganella morganii, are better colonizers of the beetle gut and can outcompete nonendogenous species, including Serratia marcescens and Escherichia coli, during in vivo competition. Finally, we find that Providencia and Morganella provide beetles with colonization resistance against Serratia and thereby reduce Serratia‐induced larval mortality. This effect is eliminated in larvae first colonized by Serratia, suggesting that while competition within the larval gut is determined by priority effects, these effects are less important for Serratia‐induced mortality. Our work suggests that an unappreciated benefit of parental care in N. vespilloides is the social transmission of the microbiome from parents to offspring.  相似文献   

8.

The diversity of deep-sea cultivable bacteria was studied in seven sediment samples of the Colombian Caribbean. Three hundred and fifty two marine bacteria were isolated according to its distinct morphological character on the solid media, then DNA sequences of the 16S rRNA were amplified to identify the isolated strains. The identified bacterial were arranged in three phylogenetic groups, Firmicutes, Proteobacteria, and Actinobacteria, with 34 different OTUs defined at ≥?97% of similarity and 70 OTUs at ≥?98.65%, being the 51% Firmicutes, 34% Proteobacteria and 15% Actinobacteria. Bacillus and Fictibacillus were the dominant genera in Firmicutes, Halomonas and Pseudomonas in Proteobacteria and Streptomyces and Micromonospora in Actinobacteria. In addition, the strains were tested for biosurfactants and lipolytic enzymes production, with 120 biosurfactant producing strains (mainly Firmicutes) and, 56 lipolytic enzymes producing strains (Proteobacteria). This report contributes to the understanding of the diversity of the marine deep-sea cultivable bacteria from the Colombian Caribbean, and their potential application as bioremediation agents.

  相似文献   

9.
10.
Bacterial clone libraries of the gut microbiota of nurtured and starved Cylindroiulus fulviceps specimens displayed the predominance of the phyla Bacteroidetes (55 and 37 %, respectively) and Proteobacteria (40 and 35 %, respectively) and a high similarity to bacteria previously detected in the intestinal tract of termites and beetles, which are known to harbor symbiotic bacteria essential for digestive activity. Bacterial isolates were dominated by Proteobacteria (74 %), followed by members of the phyla Actinobacteria, Firmicutes and Bacteroidetes. PCR-DGGE fingerprints of the gut samples showed that intestinal bacteria were affected by starvation, although the change was not significant.  相似文献   

11.
【目的】象甲是栎属植物橡子中主要的寄生昆虫,但其适应高单宁食物(橡子)的肠道微生物基础尚待揭示。本研究分析了蒙古栎和辽东栎橡子中两种柞栎象(Curculio arakawai和C.dentipes)幼虫的肠道菌群结构和多样性,试图阐明柞栎象幼虫适应高单宁食物的肠道微生物基础。【方法】分别提取蒙古栎和辽东栎橡子中象甲幼虫各50头的肠道DNA,利用Illumina MiSeq技术对肠道菌群的V3–V4区序列进行16S rRNA测序,统计样品操作分类单元(OTU)数量,分析物种组成丰度、α多样性和β多样性。【结果】结果表明,可用于物种分类的OTU分别有2054和2308个,C. arakawai和C. dentipes共有的OUT 481个。在两种柞栎象C. arakawai和C. dentipes肠道菌群中,共注释到的主要分类阶元有27个门、145个科和274个属。变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)在两种象甲肠道菌群中占优势;假单胞菌属Pseudomonas(63.8%)、沙雷氏菌属Serratia(6%)和不动杆菌属Acinetobacter (5.2%)是C. arakawai肠道中的主要类群,而沙雷氏菌属Serratia (32%)、拉恩菌属Rahnella(24.2%)、气单胞菌属Aeromonas(6.8%)和立克次体属Rickettsia(6.6%)在C.dentipes肠道菌群中占主导优势。C. arakawai和C. dentipes肠道菌群α多样性无显著差异,β多样性则差异显著。具有单宁酶活性的肠道细菌,如粘质沙雷菌Serratia marcescens、乳球菌Lactococcus lactis、假单胞菌Pseudomonas spp.在C. arakawai和C. dentipes之间差异不显著。【结论】寄生在蒙古栎和辽东栎橡子中的C. arakawai和C.dentipes肠道菌群组成迥异,这可能与遗传因素和食物特点有关。具有单宁酶活性的粘质沙雷氏菌Serratia marcescens和乳球菌Lactococcus lactis等菌类可能是两种象甲幼虫适应高单宁食物的肠道微生物基础。  相似文献   

12.
《Journal of Asia》2020,23(2):430-438
The bacterial community living in the insect gut may play an important role in nutrition, immunity and protection, detoxification of toxins, and inter- and intra-specific communication. Rice leaffolder Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Crambidae) is a notorious pest in rice, and the diversity of the gut bacteria of C. medinalis across life stages are not well understood. Here, the diversity and abundance of the gut bacterial community in C. medinalis through life stages were investigated using Illumina Miseq technology. A total of 22 bacterial phyla, 42 classes, 100 orders, 179 families, 350 genera and 395 species were identified across the different life stages of C. medinalis. Proteobacteria and Firmicutes phyla were the dominant bacterial taxa. Members of the genera Enterococcus, unclassified Enterobacteriaceae, Wolbachia, Acinetobacter, Stenotrophomonas, Microbacterium, Bacillus, Corynebacterium, Lampropedia, and Sphingobacterium were found at all life stages. Enterococcus and unclassified Enterobacteriaceae occupied higher relative abundance among bacteria community in the 2nd to 5th instar larvae, pupae and adults. The structure of bacterial community differed across the life stages of C. medinalis. Our findings will enrich the understanding of gut bacteria in C. medinalis, and will provide foundation and assistance for the development of novel pest management strategies through utilization of microbiota.  相似文献   

13.
Response of endophytic fruit fly species (Tephritidae) to larval crowding is a form of scramble competition that may affect important life history traits of adults, such as survival and reproduction. Recent empirical evidence demonstrates large differences in adult life history traits, especially longevity, among Mediterranean fruit fly (Ceratitis capitata; "medfly") biotypes obtained from different regions of the world. However, whether the evolution of long lifespan is associated with response to stress induced by larval crowding has not been fully elucidated. We investigated, under constant laboratory conditions, the response of a short‐ and a long‐lived medfly biotypes to stress induced by larval crowding. Survival and development of larvae and pupae and the size of resulting pupae were recorded. The lifespan and age‐specific egg production patterns of the obtained adults were recorded. Our findings reveal that increased larval density reduced immature survival (larvae and pupae) in the short‐lived biotype but had rather neutral effects on the longed‐lived one. Only larvae of the long‐lived biotype were capable of prolonging their developmental duration under the highest crowding regime to successfully pupate and emerge as adults. Response of emerging adults to larvae crowding conditions was similar in the two medfly biotypes. Those individuals emerging from high larval density regimes had reduced longevity and fecundity. Long‐lived biotype individuals, however, appeared to suffer a higher cost in longevity compared with the short‐lived one. The importance of our findings to understand the evolution of long lifespan is discussed.  相似文献   

14.
Symbiotic bacteria often play an essential nutritional role for insects, thereby allowing them to exploit novel food sources and expand into otherwise inaccessible ecological niches. Although many insects are inhabited by complex microbial communities, most studies on insect mutualists so far have focused on single endosymbionts and their interactions with the host. Here, we provide a comprehensive characterization of the gut microbiota of the red firebug (Pyrrhocoris apterus, Hemiptera, Pyrrhocoridae), a model organism for physiological and endocrinological research. A combination of several culture‐independent techniques (454 pyrosequencing, quantitative PCR and cloning/sequencing) revealed a diverse community of likely transient bacterial taxa in the mid‐gut regions M1, M2 and M4. However, the completely anoxic M3 region harboured a distinct microbiota consisting of facultative and obligate anaerobes including Actinobacteria (Coriobacterium glomerans and Gordonibacter sp.), Firmicutes (Clostri‐dium sp. and Lactococcus lactis) and Proteobacteria (Klebsiella sp. and a previously undescribed Rickettsiales bacterium). Characterization of the M3 microbiota in different life stages of P. apterus indicated that the symbiotic bacterial community is vertically transmitted and becomes well defined between the second and third nymphal instar, which coincides with the initiation of feeding. Comparing the mid‐gut M3 microbial communities of P. apterus individuals from five different populations and after feeding on three different diets revealed that the community composition is qualitatively and quantitatively very stable, with the six predominant taxa being consistently abundant. Our findings suggest that the firebug mid‐gut microbiota constitutes a functionally important and possibly coevolved symbiotic community.  相似文献   

15.
【背景】杜比亚蟑螂(Blaptica dubia)可用于活体饲料、化妆品和医药保健品的生产,其肠道菌的研究对杜比亚蟑螂的饲养和肠道菌资源的开发与利用都十分重要。【目的】揭示杜比亚蟑螂肠道可培养菌的种类,筛选具有产消化酶功能的菌株,为理解肠道菌对宿主的影响机理及功能菌株的利用提供科学依据和研究材料。【方法】采用体外培养法获得杜比亚蟑螂肠道菌,结合形态学和分子生物学方法进行鉴定;用水解圈法分别筛选产纤维素酶、蛋白酶、脂肪酶和淀粉酶菌株。【结果】在杜比亚蟑螂肠道中共分离出4属7种细菌,其中芽孢杆菌属(Bacillus)2种,沙雷氏菌属(Serratia)和柠檬酸杆菌属(Citrobacter)各2种,肠球菌属(Enterococcus)1种。从获得的20个菌株中筛选出10个具有产消化酶功能的菌株。其中,芽孢杆菌属的菌株D6、D12和D20具有产纤维素酶、蛋白酶、淀粉酶及脂肪酶4种消化酶的功能;沙雷氏菌属的菌株D3、D7、D9、D11和D15具有产纤维素酶、蛋白酶和脂肪酶3种消化酶的能力;柠檬酸杆菌属的菌株D5具有产纤维素酶的功能;肠球菌属的菌株D17具有产蛋白酶的能力。【结论】杜比亚蟑螂肠道多种细菌具有产消化酶帮助降解大分子营养物质的功能,可通过协助食物消化影响宿主健康。菌株D12、D7和D11分别具有最强产纤维素酶、蛋白酶和脂肪酶的能力,是可进一步开发利用的肠道功能菌株资源。  相似文献   

16.
Larvae of the diamondback moth, Plutella xylostella L. (Lepidoptera: Plutellidae), have rich microbial communities inhabiting the gut, and these bacteria contribute to the fitness of the pest. In this study we evaluated the effects of five antibiotics (rifampicin, ampicillin, tetracycline, streptomycin sulfate and chloramphenicol) on the gut bacterial diversity of P. xylostella larvae. We screened five different concentrations for each antibiotic in a leaf disc assay, and found that rifampicin and streptomycin sulfate at 3 mg/mL significantly reduced the diversity of the bacterial community, and some bacterial species could be rapidly eliminated. The number of gut bacteria in the rifampicin group and streptomycin sulfate group decreased more rapidly than the others. With the increase of antibiotic concentration, the removal efficiency was improved, whereas toxic effects became more apparent. All antibiotics reduced larval growth and development, and eventually caused high mortality, malformation of the prepupae, and hindered pupation and adult emergence. Among the five antibiotics, tetracycline was the most toxic and streptomycin sulfate was a relatively mild one. Some dominant bacteria were not affected by feeding antibiotics alone. Denaturing gradient gel electrophoresis graph showed that the most abundant and diverse bacteria in P. xylostella larval gut appeared in the cabbage feeding group, and diet change and antibiotics intake influenced gut flora abundance. Species diversity was significantly reduced in the artificial diet and antibiotics treatment groups. After feeding on the artificial diet with rifampicin, streptomycin sulfate and their mixture for 10 days, larval gut bacteria could not be completely removed as detected with the agarose gel electrophoresis method.  相似文献   

17.
The composition and diversity of bacteria forming the microbiome of parasitic organisms have implications for differential host pathogenicity and host–parasite co‐evolutionary interactions. The microbiome of pathogens can therefore have consequences that are relevant for managing disease prevalence and impact on affected hosts. Here, we investigate the microbiome of an invasive parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, where it poses extinction threat to Darwin's finches and other land birds. Larvae infest nests of Darwin's finches and consume blood and tissue of developing nestlings, and have severe mortality impacts. Using 16s rRNA sequencing data, we characterize the bacterial microbiota associated with P. downsi adults and larvae sourced from four finch host species, inhabiting two islands and representing two ecologically distinct groups. We show that larval and adult microbiomes are dominated by the phyla Proteobacteria and Firmicutes, which significantly differ between life stages in their distributions. Additionally, bacterial community structure significantly differed between larvae retrieved from strictly insectivorous warbler finches (Certhidea olivacea) and those parasitizing hosts with broader dietary preferences (ground and tree finches, Geospiza and Camarhynchus spp., respectively). Finally, we found no spatial effects on the larval microbiome, as larvae feeding on the same host (ground finches) harboured similar microbiomes across islands. Our results suggest that the microbiome of P. downsi changes during its development, according to dietary composition or nutritional needs, and is significantly affected by host‐related factors during the larval stage. Unravelling the ecological significance of bacteria for this parasite will contribute to the development of novel, effective control strategies.  相似文献   

18.
The microbiota of Hymenoptera is limited to certain bacterial species that vary according to the habitat and diet; however, the bacterial populations are not known in Telenomus tridentatus Johnson & Bin, an egg parasitoid of agricultural importance. We determined the microbiota composition of adults of Ttridentatus using next‐generation sequencing technologies. We found the presence of the Phylums Proteobacteria, in greater proportion followed by Actinobacteria and Firmicutes, respectively. The most abundant species were Cutibacterium acnes, Aquabacterium sp. and Massilia sp. The results of this study could lead to investigating the importance of symbiotic bacteria in Ttridentatus and its relation with agricultural plantations.  相似文献   

19.
Seasonal studies of surface sediment bacterial communities, from two basins with differing trophic states within Lake Balaton (Hungary), were carried out using molecular (denaturing gradient gel electrophoresis, DGGE) and cultivation-based techniques. The presence of polyphosphate accumulates was tested using Neisser staining, and phosphatase activity was investigated on organic phosphorus (P) compound. Aerobic viable cell counts were significantly higher in the eutrophic than mesotrophic basin in each season. The lowest viable counts were observed in the autumn and the highest in spring and summer month in both basins. The DGGE fingerprints of the samples reflected that the composition of sediment bacterial communities in the two basins were distinct in spring and summer, and similar in autumn, but similarly diverse in all seasons. On the basis of partial 16S rDNA sequences, the 216 strains were affiliated with six major bacterial lineages: Firmicutes; Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Common species characterized from both basins constituted up to 66% of all identified phylotypes. Strains related to Bacillus sp. were dominant in all but one sample. Isolates affiliated with Aeromonas sp. prevailed in the sample taken from the mesotrophic basin in spring. The majority of the strains showed excess poly-P accumulation. Association of Neisser staining and phosphatase activity test results suggested that excess poly-P accumulation serves as P storage for sediment bacteria. Our study implied the importance of Firmicutes, Actinobacteria, Alphaproteobacteria, and Aeromonas species in benthic bacterial P retention.  相似文献   

20.
The gut microbiota of birds is known to be characterized for different species, although it may change with feeding items. In this study, we compared the gut microbiota of birds with different feeding behaviors in the same habitat. We collected fecal samples from three Arctic species, snow buntings Plectrophenax nivalis, sanderlings Calidris alba, and pink‐footed geese Anser brachyrhynchus that are phylogenetically quite distant in different families to evaluate effects of diet on gut microbiota. Also, we characterized the prevalence of fecal bacteria using the Illumina MiSeq platform to sequence bacterial 16S rRNA genes. Our NMDS results showed that fecal bacteria of snow buntings and sanderlings were significantly distant from those of pink‐footed geese. Although all three birds were occupied by three bacterial phyla, Proteobacteria, Firmicutes, and Bacteroidetes, dominant taxa still varied among the species. Our bacterial sequences showed that snow buntings and sanderlings were dominated by Firmicutes and Bacteroidetes, while pink‐footed geese were dominated by Proteobacteria. In addition, the bacterial diversity in snow buntings and sanderlings was significantly higher than that in pink‐footed geese. Our results suggest that insectivorous feeding diet of snow buntings and sanderlings could be responsible for the similar bacterial communities between the two species despite the distant phylogenetic relationship. The distinctive bacterial community in pink‐footed geese was discussed to be related with their herbivorous diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号