首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
This study developed a surface plasmon resonance (SPR)-based live-cell biosensor with enhanced sensitivity for label-free ligand binding assay of G-protein-coupled receptors (GPCRs). The β2-adrenoceptor was heterologously expressed in human embryonic kidney-293 cells. The specific ligand binding function of expressed β2-adrenoceptor was monitored by SPR via refractive index measurement. The results indicate the expressed β2-adrenoceptor can respond to isoprenaline with high specificity. The SPR signals can be enhanced more than three times by the use of LY294002. This biosensor can be applied in the functional assay of GPCRs by detecting the specific interactions between GPCRs and their target ligands.  相似文献   

2.
Signaling and desensitization of G protein-coupled receptor are intimately related, and measuring them separately requires certain parameters that represent desensitization independently of signaling. In this study, we tested whether desensitization requires signaling in three different receptors, beta2-adrenergic receptor (beta2AR) in S49 lymphoma cells, alpha-factor pheromone receptor (Ste2p) in Saccharomyces cerevisiae LM102 cells, and dopamine D3 receptor (D3R) in HEK-293 cells. Agonist-induced beta-arrestin translocation to the plasma membrane or receptor sequestration was measured to estimate homologous desensitization. To separate the signaling and desensitization of beta2AR, which mediates stimulation of adenylyl cyclase, S49 lymphoma cys- cells that lack the alpha subunit of Gs were used. Stimulation of beta2AR in these cells failed to increase intracellular cAMP, but beta-arrestin translocation still occurred, suggesting that feedback from beta2AR signaling is not required for homologous desensitization to occur. Agonist-induced sequestration of the yeast Ste2p-L236R, which showed reduced signaling through G protein, was not different from that of wildtype Ste2p, suggesting that the receptor signaling and sequestration are not directly linked cellular events. Both G protein coupling and D3R signaling, measured as inhibition of cAMP production, were greatly enhanced by co-expression of exogenous alpha subunit of Go (Goalpha) or adenylyl cyclase type 5 (AC5), respectively. However, agonist-induced beta-arrestin translocation, receptor phosphorylation, and sequestration were not affected by co-expression of Galphao and AC5, suggesting that the extent of signaling does not determine desensitization intensity. Taken together, our results consistently suggest that G protein signaling and homologous desensitization are independent cellular processes.  相似文献   

3.
Agonist activation of a G protein-coupled receptor (GPCR) results in the redistribution of the receptor protein away from the cell surface into internal cellular compartments through a process of endocytosis known as internalization. Visualization of receptor internalization has become experimentally practicable by using fluorescent reagents such as green fluorescent protein (GFP). In this study, we examined whether the ligand-mediated internalization of a GPCR can be exploited for pharmacological evaluations. We acquired fluorescent images of cells expressing GFP-labeled GPCRs and evaluated the ligand-mediated internalization quantitatively by image processing. Using beta2-adrenoceptor and vasopressin V1a receptor as model GPCRs that couple to Gs and Gq, respectively, we first examined whether these GFP-tagged GPCRs exhibited appropriate pharmacology. The rank order of receptor internalization potency for a variety of agonists and antagonists specific to each receptor corresponded well with that previously observed in ligand binding studies. In addition to chemical ligand-induced internalization, this cell-based fluorescence imaging system successfully monitored the internalization of the proton-sensing GPCR TDAG8, and that of the free fatty acid-sensitive GPCR GPR120. The results show that monitoring receptor internalization can be a useful approach for pharmacological characterization of GPCRs and in fishing for ligands of orphan GPCRs.  相似文献   

4.
A chip-based biosensor technology using surface plasmon resonance (SPR) was developed for studying the interaction of ligands and G protein-coupled receptors (GPCRs). GPCRs, the fourth largest superfamily in the human genome, are the largest class of targets for drug discovery.We have expressed the three subtypes of α2-adrenergic receptor (α2-AR), a prototypical GPCR as functional fusion proteins in baculovirus-infected insect cells. The localization of the expressed receptor was observed in intracellular organelles, as detected by eGFP fluorescence. In addition, the deletion mutants of α2B-AR, with a deletion in the 3rd intracellular loop, exhibited unaltered Kd values and enhanced stability, thus making them more promising candidates for crystallization. SPR demonstrated that small molecule ligands can bind the detergent-solubilized receptor, thus proving that α2-AR is active even in a lipid-free environment. The Kd values obtained from the biosensor analysis and traditional ligand binding studies correlate well with each other. This is the first demonstration of the binding of a small molecule to the detergent-solubilized state of α2-ARs and interaction of low-molecular mass-ligands in real time in a label-free environment. This technology will also allow the development of high throughput platform for screening a large number of compounds for generation of leads.  相似文献   

5.
Lin Y  Tang YJ  Zong HL  Gu JX  Deng WW  Wang C  Sun B 《FEBS letters》2007,581(26):5151-5157
Interleukin 12 receptor beta1 (IL-12Rbeta1) and beta2 (IL-12Rbeta2) constitute the functional and high-affinity receptor complex for interleukin 12 (IL-12) and mediate important functions in activated T cells. In this study, we identified cyclin G associated kinase (GAK) as a new IL-12Rbeta2-interacting protein using yeast two-hybrid system and confirmed it by coimmunoprecipitation assays. Overexpression of GAK in activated T cells suppresses IL-12 induced IFN-gamma production but has no detectable effects on its proliferation, whereas knockdown of GAK by RNA interference (RNAi) increases IFN-gamma production. These results suggest that GAK associates with IL-12Rbeta2 and may play a role in regulating IL-12 signaling.  相似文献   

6.
A(2A) adenosine receptors are considered an excellent target for drug development in several neurological and psychiatric disorders. It is noteworthy that the responses evoked by A(2A) adenosine receptors are regulated by D(2) dopamine receptor ligands. These two receptors are co-expressed at the level of the basal ganglia and interact to form functional heterodimers. In this context, possible changes in A(2A) adenosine receptor functional responses caused by the chronic blockade/activation of D(2) dopamine receptors should be considered to optimise the therapeutic effectiveness of dopaminergic agents and to reduce any possible side effects. In the present paper, we investigated the regulation of A(2A) adenosine receptors induced by antipsychotic drugs, commonly acting as D(2) dopamine receptor antagonists, in a cellular model co-expressing both A(2A) and D(2) receptors. Our data suggest that the treatment of cells with the classical antipsychotic haloperidol increased both the affinity and responsiveness of the A(2A) receptor and also affected the degree of A(2A)-D(2) receptor heterodimerisation. In contrast, an atypical antipsychotic, clozapine, had no effect on A(2A) adenosine receptor parameters, suggesting that the two classes of drugs have different effects on adenosine-dopamine receptor interaction. Modifications to A(2A) adenosine receptors may play a significant role in determining cerebral adenosine effects during the chronic administration of antipsychotics in psychiatric diseases and may account for the efficacy of A(2A) adenosine receptor ligands in pathologies associated with dopaminergic system dysfunction. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11302-010-9201-z) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Chronic exposure of human isolated bronchi to beta2-adrenergic agonists, especially fenoterol, potentiates smooth muscle contraction in response to endothelin-1 (ET-1), a peptide implicated in chronic inflammatory airway diseases. 5'-Cyclic adenosine monophosphate (cAMP) pathways are involved in fenoterol-induced hyperresponsiveness. The present study investigated whether chronic elevation of intracellular cAMP by other pathways than beta2-adrenoceptor stimulation provokes bronchial hyperresponsiveness. Samples from eighteen human bronchi were sensitized to ET-1 by prolonged incubation with 0.1 microM fenoterol (15 h, 21 degrees C), or, under similar conditions, were incubated with a selective type-3 phosphodiesterase inhibitor (1 microM siguazodan), two selective type-4 phosphodiesterase inhibitors (0.1 microM rolipram and 0.1 microM cilomilast), a combination of fenoterol and rolipram (0.1 microM each) or of fenoterol and cilomilast (0.1 microM each). Rolipram and cilomilast, but not siguazodan, induced hyperresponsiveness (p < 0.01 and p < 0.05 vs. paired controls, respectively) similar to the fenoterol effect. Fenoterol-induced bronchial hyperresponsiveness was significantly enhanced by coincubation with cilomilast (p < 0.05 vs. fenoterol alone) but not with rolipram. Our results suggest that prolonged activation of intracellular cAMP through phosphodiesterase 4 inhibition induces hyperresponsiveness to ET-1 in human isolated bronchi. However, differences in subcellular localization of phosphodiesterase 4 may provoke divergent responsiveness patterns when human bronchi are continuously exposed to selective phosphodiesterase inhibitors with or without beta2-adrenergic agonists.  相似文献   

9.
Beta1- and beta2-adrenergic receptors (betaARs) are highly homologous, yet they play clearly distinct roles in cardiac physiology and pathology. Myocyte contraction, for instance, is readily stimulated by beta1AR but not beta2AR signaling, and chronic stimulation of the two receptors has opposing effects on myocyte apoptosis and cell survival. Differences in the assembly of macromolecular signaling complexes may explain the distinct biological outcomes. Here, we demonstrate that beta1AR forms a signaling complex with a cAMP-specific phosphodiesterase (PDE) in a manner inherently different from a beta2AR/beta-arrestin/PDE complex reported previously. The beta1AR binds a PDE variant, PDE4D8, in a direct manner, and occupancy of the receptor by an agonist causes dissociation of this complex. Conversely, agonist binding to the beta2AR is a prerequisite for the recruitment of a complex consisting of beta-arrestin and the PDE4D variant, PDE4D5, to the receptor. We propose that the distinct modes of interaction with PDEs result in divergent cAMP signals in the vicinity of the two receptors, thus, providing an additional layer of complexity to enforce the specificity of beta1- and beta2-adrenoceptor signaling.  相似文献   

10.
Conformational thermostabilisation of G-protein-coupled receptors is a successful strategy for their structure determination. The thermostable mutants tolerate short-chain detergents, such as octylglucoside and nonylglucoside, which are ideal for crystallography, and in addition, the receptors are preferentially in a single conformational state. The first thermostabilised receptor to have its structure determined was the β1-adrenoceptor mutant β1AR-m23 bound to the antagonist cyanopindolol, and recently, additional structures have been determined with agonist bound. Here, we describe further stabilisation of β1AR-m23 by the addition of three thermostabilising mutations (I129V, D322K, and Y343L) to make a mutant receptor that is 31 °C more thermostable than the wild-type receptor in dodecylmaltoside and is 13 °C more thermostable than β1AR-m23 in nonylglucoside. Although a number of thermostabilisation methods were tried, including rational design of disulfide bonds and engineered zinc bridges, the two most successful strategies to improve the thermostability of β1AR-m23 were an engineered salt bridge and leucine scanning mutagenesis. The three additional thermostabilising mutations did not significantly affect the pharmacological properties of β1AR-m23, but the new mutant receptor was significantly more stable in short-chain detergents such as heptylthioglucoside and denaturing detergents such as SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号