首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 119 毫秒
1.
生态系统碳循环过程对水分响应的研究已成为全球变化关注的焦点问题之一。基于长白山温带针阔混交林与千烟洲亚热带人工针叶林观测站2003—2009年生长季的碳通量(NEE)和气象观测数据,综合考虑水分对光合、呼吸作用的影响,构建不同的NEE模型,并应用模型数据融合方法优化模型参数、遴选最适模型,系统分析了水分因子对不同森林生态系统碳循环的影响。结果表明:(1)优化后的模型参数均能被NEE实测数据较好约束。长白山生长季的光合、呼吸参数值均高于千烟洲,未考虑空气饱和水汽压差(VPD)的模型高估了千烟洲温度敏感性参数(Q10)值、低估了千烟洲基础呼吸速率参数(BR)值;(2)仅考虑VPD对光合作用影响的模型是长白山生长季碳通量模拟的最优模型,但模拟精度提高不显著。不同模型间碳通量组分模拟结果差异较小;(3)考虑VPD和土壤含水量对光合、呼吸作用共同影响的模型是千烟洲生长季碳通量模拟的最优模型,并且显著提高了模拟精度。未考虑水分的模型在生长季高估了总生态系统生产力(GEP)总量2.0%(21.85 g C/m~2),同时更大幅度地高估了生态系统呼吸(RE)总量4.4%(38.02 g C/m~2),从而导致NEE总量低估于实测值7.8%(18.55 g C/m~2)。  相似文献   

2.
张廷龙  孙睿  张荣华  张蕾 《生态学杂志》2013,24(10):2746-2754
模型模拟和站点观测是陆地生态系统水、碳循环研究最主要的两种手段,但各有优势和不足,若二者相互结合,则能更准确地反映生态系统水、碳通量的动态变化.数据同化为模型与观测结合提供了一条有效的途径.本文采用哈佛森林环境监测站相关数据,利用集合卡曼滤波同化算法,将实测叶面积指数(LAI)和遥感LAI同化进入Biome BGC模型中,对该地区水、碳通量进行模拟.结果表明:与未同化模拟相比,将1998、1999和2006年实测LAI数据同化后,模型模拟碳通量(NEE)与通量观测NEE的决定系数(R2)平均提升8.4%;蒸散发(ET)的R2平均提升10.6%;NEE的绝对误差和(SAE)和均方根误差(RMSE)平均下降17.7%和21.2%,ET的SAE和RMSE平均下降26.8%和28.3%.将2000-2004年MODIS LAI 产品与模型同化后,NEE、ET模拟值与观测值间的R2分别提升7.8%和4.7%;NEE的SAE和 RMSE分别下降21.9%和26.3%,ET的SAE和 RMSE分别下降24.5%和25.5%.无论实测LAI还是遥感观测LAI,同化进入模型都能不同程度地提高水碳通量的模拟精度.  相似文献   

3.
中亚热带人工针叶林对未来气候变化的响应   总被引:5,自引:0,他引:5  
利用基于生理生态学过程的EALCO模型,探讨了千烟洲中亚热带人工针叶林生态系统对未来气候变化的响应.结果表明:CO2浓度、温度和降水的变化对该人工林生态系统碳水通量影响的程度不同,其中CO2浓度>温度>降水.CO2浓度是生态系统总光合生产力(GPP)的主要驱动因子,温度与CO2浓度均是控制生态系统呼吸的主要环境因子,温度的升高使植物地上部分呼吸明显增加,而CO2浓度升高则对土壤呼吸影响较大.温度升高使蒸散(ET)增加,而CO2浓度升高则使ET减少.在未来气候变化情景(2100年)下,该人工林生态系统的净初级生产力将增加22%,说明其仍具有较强的固碳潜力.  相似文献   

4.
 碳循环模型参数的确定和优化对生态系统净CO2交换(NEE)的模型计算至关重要。该文利用2010–2012年ChinaFLUX千烟洲站点的通量观测资料, 对植被光合呼吸模型(VPRM)的参数进行了优化。通过比较两种不同的拟合方案, 发现利用传统光响应方程得到的参数不适用于VPRM, 而利用模型自身反演方案拟合得到的参数最大光量子效率(λ)达0.203, 大于C3植物平均值, 但与其他相关研究结果吻合。采用VPRM模型反演方案优化得到的参数后, VPRM能较准确地模拟千烟洲站不同季节的NEE。其对全年半小时NEE模拟的平均误差为–0.86 μmol·m–2·s–1, 相关系数为0.72。模型可准确地模拟生长旺季NEE平均日变化, 但低估了非生长旺季白天吸收峰值约52%。通过个例分析发现, VPRM模型可以准确模拟晴天条件下NEE的时间变化, 但对阴雨天条件下NEE的模拟还存在较大的不确定性。该研究将有助于进一步改进CO2通量及浓度的区域数值模拟。  相似文献   

5.
何维  江飞  居为民 《生态学报》2020,40(13):4371-4382
生态系统模型是模拟全球陆地生态系统碳循环的重要工具,但是其在全球不同区域的模拟存在很大的不确定性。如何评估陆地生态系统模型的不确定性是一项重要的研究。以北美地区为例,利用8个高塔观测站点同步获取的大气CO_2和羰基硫(OCS)浓度数据,结合WRF-STILT大气粒子扩散模型,评估了CASA-GFED3、SiB3和SiBCASA三种陆地生态系统模型模拟总初级生产力(GPP)和净生态系统CO_2交换(NEE)通量的不确定性。结果表明,SiB3模型能很好地模拟北美陆地生态系统GPP和NEE的季节变化时相和幅度,在3种模型中具有最佳的模拟能力;CASA-GFED3模型模拟的NEE季节变化较为理想、但对生长季GPP的模拟存在较大的误差,SiBCASA模型在模拟冬季晚期和春季早期的NEE和GPP时表现较不理想。研究证明了大气CO_2和OCS在评估陆地生态系统模型碳通量模拟的不确定性中的作用,为利用大气CO_2和OCS观测数据优化计算陆地生态系统光合和呼吸碳通量提供了理论支撑。  相似文献   

6.
张嘉荣  王咏薇  张弥  刁一伟  刘诚 《生态学报》2017,37(20):6679-6690
植被光合呼吸模型(VPRM)关键参数的确定和优化是准确计算生态系统净CO_2交换(NEE)的基础。利用中国通量观测研究联盟(China FLUX)长白山站温带阔叶红松林2005年的通量观测资料,对VPRM的4个参数(最大光能利用率ε_0、光照为半饱和条件下光合有效辐射值PAR0和呼吸参数(α、β))进行优化,并使用2006年的观测资料对参数优化前后的模拟结果进行评估。结果表明:参数优化后,VPRM能够较好地模拟长白山地区2006年植物生长季NEE的变化。对30min NEE模拟的平均误差为-1.81μmol m~(-2)s~(-1),相关系数为0.72,模拟NEE平均日变化的峰值约为观测值的91%,相关系数为0.97。但在植物非生长季模型对森林NEE的模拟效果较差。模型模拟30min NEE的平均误差为0.39μmol m~(-2)s~(-1),相关系数仅为0.10,并且模拟低估NEE平均日变化白天吸收峰值约82%,日变化模拟值与观测值的相关系数为0.50。通过分析不同天气个例,发现模型可以较好地模拟晴天条件下NEE的变化,而对阴雨天NEE的模拟误差较大。该研究有利于提高VPRM模型对温带落叶阔叶林NEE的模拟能力,对进一步改进区域陆地NEE的模拟具有重要意义。  相似文献   

7.
基于观测数据的陆地生态系统模型参数估计有助于提高模型的模拟和预测能力,降低模拟不确定性.在已有参数估计研究中,涡度相关技术测定的净生态系统碳交换量(NEE)数据的随机误差通常被假设为服从零均值的正态分布.然而近年来已有研究表明NEE数据的随机误差更服从双指数分布.为探讨NEE观测误差分布类型的不同选择对陆地生态系统机理模型参数估计以及碳通量模拟结果造成的差异,以长白山温带阔叶红松林为研究区域,采用马尔可夫链-蒙特卡罗方法,利用2003~2005年测定的NEE数据对陆地生态系统机理模型CEVSA2的敏感参数进行估计,对比分析了两种误差分布类型(正态分布和双指数分布)的参数估计结果以及碳通量模拟的差异.结果表明,基于正态观测误差模拟的总初级生产力和生态系统呼吸的年总量分别比基于双指数观测误差的模拟结果高61~86 g C m-2 a-1和107~116 g C m-2 a-1,导致前者模拟的NEE年总量较后者低29~47 g C m-2 a-1,特别在生长旺季期间有明显低估.在参数估计研究中,不能忽略观测误差的分布类型以及相应的目标函数的选择,它们的不合理设置可能对参数估计以及模拟结果产生较大影响.  相似文献   

8.
吕富成  马建勇  曹云  延晓冬 《生态学报》2022,42(7):2810-2821
森林生态系统是陆地碳循环的重要组成部分,其固碳能力显著高于其他陆地生态系统,研究森林生态系统碳通量是认识和理解全球变化对碳循环影响的关键。碳循环模型是研究森林生态系统碳通量有效工具。以长白山温带落叶阔叶林、千烟洲亚热带常绿针叶林、鼎湖山亚热带常绿阔叶林和西双版纳热带雨林等4种中国典型森林生态系统为研究对象,利用涡度相关2003-2012年观测数据,评估FORCCHN模型对生态系统呼吸(ER),总初级生产力(GPP),净生态系统生产力(NEP)的模型效果。结果表明:(1) FORCCHN模型能够较好的模拟中国4种典型森林生态系统不同时间尺度的碳通量。落叶阔叶林和常绿针叶林ER和GPP的逐日变化模拟效果较好(ER的相关系数分别为0.94和0.92,GPP的相关系数分别为0.86和0.74);(2)4种森林生态系统碳通量季节动态模拟值和观测值显著相关(P<0.01),ER、GPP、NEP的观测值和模拟值的R2分别为0.77-0.93、0.54-0.88和0.15-0.38;模型可以很好地模拟森林生态系统不同季节碳汇(NEP>0),碳源(NEP<0)的变化规律;(3)4种森林生态系统碳通量模拟值与观测值的年际变化有很好的吻合度,但在数值大小上存在差异,模型高估了常绿阔叶林的ER和GPP,略微低估了其他3种森林生态系统ER和GPP。  相似文献   

9.
研究中国北方杨树人工林碳水通量对气候变化的响应,对于制定合理的经营管理措施以应对区域的气候变化具有重要意义。基于对杨树人工林碳水通量的连续监测数据和对Biome-BGC模型参数的校准,模拟分析杨树人工林碳水通量及水分利用效率(WUE)对气候变化(气温上升、降水变化和大气CO_2浓度上升)的响应规律。结果表明,Biome-BGC模型校准后显著提升了其对杨树人工林碳水通量的模拟精度,对GPP、ET模拟结果的Nash-Sutcliffe效率系数(NS)分别为0.69和0.63,各自提高了64.3%和80%,均方根误差(RMSE)则分别降低至1.94 g C m~(-2) d~(-1)和0.88 mm/d,分别下降了26.5%和25.4%。在未来气候变化情景中,单独的气温上升、降水增加和大气CO_2浓度上升分别造成GPP的降低、升高和升高,其中GPP对大气CO_2浓度上升的响应程度(28%—44%)远高于对气温上升(1%—5%)和降水变化(3%—10%)的,ET则主要受降水的影响,响应程度在5%—14%之间。GPP和ET对气候变化的响应则受不同水平的气温上升、降水变化和大气CO_2浓度上升三者综合作用的影响。基于GPP和ET对气候变化的响应,WUE随气温上升、降水增加表现为降低趋势,随降水减少和大气CO_2浓度升高则呈升高趋势;其对未来气候中大气CO_2浓度升高的响应程度为27.7%—43.6%,远高于对气温上升(1.2%—5.8%)和降水变化(1.2%—3.5%)的,说明未来气候变化中大气CO_2浓度上升是促进杨树生长的主要因素;其中相对于当前WUE(2.8 g C/kg H_2O),C2T2P1和C0T3P0情景下WUE的升高和降低幅度最大,分别为45.4%和5.8%。  相似文献   

10.
数据同化为模型与遥感观测结合提供了一条有效的途径,通过在模型运行过程中融入遥感观测数据,调整模型运行轨迹从而降低模型误差,提高模拟精度。本文利用集合卡尔曼滤波(En KF)算法同化生长季中分辨率成像光谱仪(MODIS)叶面积指数(LAI)与Biome-BGC模型模拟的LAI模拟长白山阔叶红松林的水碳通量。同时,通过改进模拟的雪面升华与土壤温度计算方法的参数,旨在降低冬季生态呼吸的模拟误差。结果表明,相对于原始模型,数据同化与模型改进后使得生态系统总初级生产力(GPP)的模拟值与观测值之间的相关系数提高0.06,中心化均方根误差(RMSE)降低0.48 g C·m~(-2)·d~(-1);生态系统呼吸(RE)的相关系数提高0.02,中心化均方根误差降低0.20 g C·m~(-2)·d~(-1);净生态系统碳交换量(NEE)相关系数提高0.35,中心化均方根误差降低0.50 g C·m~(-2)·d~(-1)。同时,数据同化对蒸散发(ET)的模拟精度没有显著影响,改进的模型提高了其相关系数。基于En KF算法的数据同化提高了长白山阔叶红松林碳通量模拟精度,对于精确估算区域碳通量有着重要的意义。  相似文献   

11.
Eddy covariance records hold great promise for understanding the processes controlling the net ecosystem exchange of CO2 (NEE). However, NEE is the small difference between two large fluxes: photosynthesis and ecosystem respiration. Consequently, separating NEE into its component fluxes, and determining the process‐level controls over these fluxes, is a difficult problem. In this study, we used a model‐data synthesis approach with the Simplified PnET (SIPNET) flux model to extract process‐level information from 5 years of eddy covariance data at an evergreen forest in the Colorado Rocky Mountains. SIPNET runs at a twice‐daily time step, and has two vegetation carbon pools, a single aggregated soil carbon pool, and a soil moisture submodel that models both evaporation and transpiration. By optimizing the model parameters before evaluating model‐data mismatches, we were able to probe the model structure independent of any arbitrary parameter set. In doing so, we were able to learn about the primary controls over NEE in this ecosystem, and in particular the respiration component of NEE. We also used this parameter optimization, coupled with a formal model selection criterion, to investigate the effects of making hypothesis‐driven changes to the model structure. These experiments lent support to the hypotheses that (1) photosynthesis, and possibly foliar respiration, are down‐regulated when the soil is frozen and (2) the metabolic processes of soil microbes vary in the summer and winter, possibly because of the existence of distinct microbial communities at these two times. Finally, we found that including water vapor fluxes, in addition to carbon fluxes, in the parameter optimization did not yield significantly more information about the partitioning of NEE into gross photosynthesis and ecosystem respiration.  相似文献   

12.
We performed a synthetic analysis of Harvard Forest net ecosystem exchange of CO2 (NEE) time series and a simple ecosystem carbon flux model, the simplified Photosynthesis and Evapo‐Transpiration model (SIPNET). SIPNET runs at a half‐daily time step, and has two vegetation carbon pools, a single aggregated soil carbon pool, and a simple soil moisture sub‐model. We used a stochastic Bayesian parameter estimation technique that provided posterior distributions of the model parameters, conditioned on the observed fluxes and the model equations. In this analysis, we estimated the values of all quantities that govern model behavior, including both rate constants and initial conditions for carbon pools. The purpose of this analysis was not to calibrate the model to make predictions about future fluxes but rather to understand how much information about process controls can be derived directly from the NEE observations. A wavelet decomposition enabled us to assess model performance at multiple time scales from diurnal to decadal. The model parameters are most highly constrained by eddy flux data at daily to seasonal time scales, suggesting that this approach is not useful for calculating annual integrals. However, the ability of the model to fit both the diurnal and seasonal variability patterns in the data simultaneously, using the same parameter set, indicates the effectiveness of this parameter estimation method. Our results quantify the extent to which the eddy covariance data contain information about the ecosystem process parameters represented in the model, and suggest several next steps in model development and observations for improved synthesis of models with flux observations.  相似文献   

13.
Responses of ecosystem carbon (C) fluxes to human disturbance and climatic warming will affect terrestrial ecosystem C storage and feedback to climate change. We conducted a manipulative experiment to investigate the effects of warming and clipping on soil respiration (Rs), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross ecosystem production (GEP) in an alpine meadow in a permafrost region during two hydrologically contrasting years (2012, with 29.9% higher precipitation than the long-term mean, and 2013, with 18.9% lower precipitation than the long-tem mean). Our results showed that GEP was higher than ER, leading to a net C sink (measured by NEE) over the two growing seasons. Warming significantly stimulated ecosystem C fluxes in 2012 but did not significantly affect these fluxes in 2013. On average, the warming-induced increase in GEP (1.49 µ mol m−2s−1) was higher than in ER (0.80 µ mol m−2s−1), resulting in an increase in NEE (0.70 µ mol m−2s−1). Clipping and its interaction with warming had no significant effects on C fluxes, whereas clipping significantly reduced aboveground biomass (AGB) by 51.5 g m−2 in 2013. These results suggest the response of C fluxes to warming and clipping depends on hydrological variations. In the wet year, the warming treatment caused a reduction in water, but increases in soil temperature and AGB contributed to the positive response of ecosystem C fluxes to warming. In the dry year, the reduction in soil moisture, caused by warming, and the reduction in AGB, caused by clipping, were compensated by higher soil temperatures in warmed plots. Our findings highlight the importance of changes in soil moisture in mediating the responses of ecosystem C fluxes to climate warming in an alpine meadow ecosystem.  相似文献   

14.
The success of invasive aridland plants may depend on their utilization of precipitation not fully exploited by native species, which could lead to seasonally altered ecosystem carbon and water fluxes. We measured volumetric soil water across 25-cm profiles (??25cm) and springtime whole-plant water- and carbon-fluxes of the exotic Lehmann lovegrass (Eragrostis lehmanniana) and a native bunchgrass, bush muhly (Muhlenbergia porteri), following typical (55?mm in 2009) and El Ni?o-enhanced accumulations (154?mm in 2010) in a SE Arizona savanna. Across both years, ??25cm was higher under lovegrass plots, with similar evapotranspiration (ET) between lovegrass and bush muhly plots. However, in 2010 transpiration (T) was higher in bush muhly than lovegrass, implying higher soil evaporation in lovegrass plots maintained similar ET. Net ecosystem carbon dioxide exchange (NEE) was similar between lovegrass and bush muhly plots in 2009, but was more negative in bush muhly plots following El Ni?o, indicating greater CO2 assimilation. Ecosystem respiration (R eco) and gross ecosystem photosynthesis (GEP) were similar between lovegrass and bush muhly plots in 2009, but were higher in bush muhly plots in 2010. As a result, lovegrass plots reduced ecosystem water-use efficiency (WUEe?=?NEE/ET), while bush muhly WUEe remained constant between 2009 and 2010. Concurrent whole-plant WUE (WUEp?=?GEP/T) did not change in lovegrass plots, but increased in bush muhly plots between these years. We concluded that cool-season precipitation use is not a component of Lehmann lovegrass invasive success, but that the change in ET partitioning and attendant shifts in cool-season WUEe may increase interannual variation in ecosystem water- and carbon-exchange dynamics in the water-limited systems it dominates.  相似文献   

15.
朱湾湾  许艺馨  余海龙  王攀  黄菊莹 《生态学报》2021,41(16):6679-6691
为深入了解降水格局改变和氮沉降增加对荒漠草原生态系统碳交换的影响机制,于2017年在宁夏荒漠草原设立了降水量变化(减少50%、减少30%、自然降水量、增加30%以及增加50%)和氮添加(0和5 g m-2 a-1)的野外试验,研究了2019年生长季(5-10月份)净生态系统碳交换(Net ecosystem carbon exchange,NEE)、生态系统呼吸(Ecosystem respiration,ER)和总生态系统生产力(Gross ecosystem productivity,GEP)的时间动态,分析了三者与植被组成以及土壤属性的关系。NEE、ER和GEP日动态和月动态均呈先增加后降低,NEE在整个生长季表现为净生态系统碳吸收。0和5 g m-2 a-1氮添加下,减少降水量显著降低了NEE、ER和GEP (P<0.05),增加30%降水量显著提高了三者(P<0.05)。相同降水量条件下,氮添加不同程度地提高了NEE、ER和GEP,且其效应在增加50%降水量时较为明显。净生态系统碳吸收(-NEE)、ER和GEP与群落生物量、牛枝子(Lespedeza potaninii)以及草木樨状黄芪(Astragalus melilotoides)生物量正相关。三者亦随Patrick丰富度指数和Shannon-Wiener多样性指数的增加而增加。本文结果意味着,减少降水量降低了土壤水分和养分有效性、抑制了植物生长,从而降低了生态系统碳交换。适量增加降水量则可能通过提高土壤含水量、刺激土壤酶活性、调节土壤C : N : P平衡特征等途径,促进了植物生长和物种多样性,从而提高了生态系统碳汇功能;氮添加亦促进了生态系统碳交换,但其与降水的交互作用尚不明显,需通过长期观测进行深入探讨。  相似文献   

16.
We used eddy covariance and biomass measurements to quantify the carbon (C) dynamics of a naturally regenerated longleaf pine/slash pine flatwoods ecosystem in north Florida for 4 years, July 2000 to June 2002 and 2004 to 2005, to quantify how forest type, silvicultural intensity and environment influence stand‐level C balance. Precipitation over the study periods ranged from extreme drought (July 2000–June 2002) to above‐average precipitation (2004 and 2005). After photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD) >1.5 kPa and air temperature <10 °C were important constraints on daytime half‐hourly net CO2 exchange (NEEday) and reduced the magnitude of midday CO2 exchange by >5 μmol CO2 m?2 s?1. Analysis of water use efficiency indicated that stomatal closure at VPD>1.5 kPa moderated transpiration similarly in both drought and wet years. Night‐time exchange (NEEnight) was an exponential function of air temperature, with rates further modulated by soil moisture. Estimated annual net ecosystem production (NEP) was remarkably consistent among the four measurement years (range: 158–192 g C m?2 yr?1). In comparison, annual ecosystem C assimilation estimates from biomass measurements between 2000 and 2002 ranged from 77 to 136 g C m?2 yr?1. Understory fluxes accounted for approximately 25–35% of above‐canopy NEE over 24‐h periods, and 85% and 27% of whole‐ecosystem fluxes during night and midday (11:00–15:00 hours) periods, respectively. Concurrent measurements of a nearby intensively managed slash pine plantation showed that annual NEP was three to four times greater than that of the Austin Cary Memorial Forest, highlighting the importance of silviculture and management in regulating stand‐level C budgets.  相似文献   

17.
Niu S  Wu M  Han Y  Xia J  Li L  Wan S 《The New phytologist》2008,177(1):209-219
Global warming and a changing precipitation regime could have a profound impact on ecosystem carbon fluxes, especially in arid and semiarid grasslands where water is limited. A field experiment manipulating temperature and precipitation has been conducted in a temperate steppe in northern China since 2005. A paired, nested experimental design was used, with increased precipitation as the primary factor and warming simulated by infrared radiators as the secondary factor. The results for the first 2 yr showed that gross ecosystem productivity (GEP) was higher than ecosystem respiration, leading to net C sink (measured by net ecosystem CO(2) exchange, NEE) over the growing season in the study site. The interannual variation of NEE resulted from the difference in mean annual precipitation. Experimental warming reduced GEP and NEE, whereas increased precipitation stimulated ecosystem C and water fluxes in both years. Increased precipitation also alleviated the negative effect of experimental warming on NEE. The results demonstrate that water availability plays a dominant role in regulating ecosystem C and water fluxes and their responses to climatic change in the temperate steppe of northern China.  相似文献   

18.
Across many dryland regions, historically grass‐dominated ecosystems have been encroached upon by woody‐plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland–shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody‐plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near‐surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody‐plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep‐rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March–December (primary growing season) totals of NEE were ?63, ?212, and ?233 g C m?2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody‐plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas.  相似文献   

19.
Eddy‐covariance measurements of net ecosystem carbon exchange (NEE) were carried out above a grazed Mediterranean C3/C4 grassland in southern Portugal, during two hydrological years, 2004–2005 and 2005–2006, of contrasting rainfall. Here, we examine the seasonal and interannual variation in NEE and its major components, gross primary production (GPP) and ecosystem respiration (Reco), in terms of the relevant biophysical controls. The first hydrological year was dry, with total precipitation 45% below the long‐term mean (669 mm) and the second was normal, with total precipitation only 12% above the long‐term mean. The drought conditions during the winter and early spring of the dry year limited grass production and the leaf area index (LAI) was very low. Hence, during the peak of the growth period, the maximum daily rate of NEE and the light‐use and water‐use efficiencies were approximately half of those observed in the normal year. In the summer of 2006, the warm‐season C4 grass, Cynodon dactylon L., exerted an evident positive effect on NEE by converting the ecosystem into a carbon sink after strong rain events and extending the carbon sequestration for several days, after the end of senescence of the C3 grasses. On an annual basis, the GPP and NEE were 524 and 49 g C m?2, respectively, for the dry year, and 1261 and ?190 g C m?2 for the normal year. Therefore, the grassland was a moderate net source of carbon to the atmosphere, in the dry year, and a considerable net carbon sink, in the normal year. In these 2 years of experiment the total amount of precipitation was the main factor determining the interannual variation in NEE. In terms of relevant controls, GPP and NEE were strongly related to incident photosynthetic photon flux density on short‐term time scales. Changes in LAI explained 84% and 77% of the variation found in GPP and NEE, respectively. Variations in Reco were mainly controlled by canopy photosynthesis. After each grazing event, the reduction in LAI affected negatively the NEE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号