首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: An alteration in signal transduction systems in Alzheimer's disease (AD) would likely be of pathophysiological significance, because these processes control normal brain functions. Previously, a diminished β-adrenergic-mediated cyclic AMP response was found in cultured fibroblasts from AD patients. Because cross-talk between the phosphoinositide and cyclic AMP pathways exists, the phosphoinositide cascade was studied under conditions that were similar to those for studying the cyclic AMP response. Cells from AD patients and age-matched controls responded to bradykinin (BK) and released inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in a time- and dose-dependent manner. The level of Ins(1,4,5)P3 increased rapidly and transiently in response to BK, peaked at 5 s, but still remained 116–132% above the basal level by 30 s. Although the temporal patterns were similar in both groups, the Ins(1,4,5)P3 concentrations in AD fibroblasts were 73 and 89% above levels in the age-matched controls at 5 and 10 s, respectively. Prostaglandin E1 also increased Ins(1,4,5)P3 formation, but this response was not different between the two groups. Although K D (affinity) values for the BK receptor were similar in both control and AD cells, the number of BK receptors ( B max) was significantly elevated in AD fibroblasts (186.8 ± 0.8 fmol/mg of protein) as compared with control fibroblasts (57.2 ± 15.3 fmol/mg of protein). These results indicate that the elevated Ins(1,4,5)P3 production in response to BK in AD fibroblasts is positively correlated with an increase in the receptor numbers.  相似文献   

2.
Abstract: A detailed analysis of the generation and subsequent metabolism of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] following muscarinic cholinoceptor stimulation in primary cultures of rat cerebellar granule cells has been undertaken. Following incubation of cerebellar granule cell cultures with [3H]inositol for 48 h, labelling of the inositol phospholipid pool approached equilibrium. Significant basal labelling of inositol pentakisphosphate (InsP5) and inositol hexakisphosphate (InsP6), as well as inositol mono- to tetrakisphosphate, fractions was observed. Addition of carbachol (1 m M ) caused an immediate increase in level of Ins(1,4,5)P3 (peak increase two-fold over basal by 60 s), which was well-maintained over the initial 300 s following agonist addition. In contrast, only a modest, more slowly developing, increase in inositol tetrakisphosphate accumulation was observed, whereas labelling of InsP5 and InsP6 was entirely unaffected by carbachol stimulation. Analysis of the products of Ins(1,4,5)P3 and inositol 1,3,4,5-tetrakisphosphate metabolism in broken cell preparations strongly suggested that Ins(1,4,5)P3 metabolism occurs predominantly via the inositol polyphosphate 5-phosphatase route, with metabolism via the Ins(1,4,5)P3 3-kinase being a relatively minor pathway. In view of the pattern of inositol (poly)phosphate metabolites observed on stimulation of the muscarinic receptor, it seems likely that, over the time course studied, the inositol polyphosphates are derived principally from phosphoinositide-specific phospholipase C hydrolysis of phosphatidylinositol 4,5-bisphosphate, although some hydrolysis of phosphatidylinositol 4-phosphate cannot be excluded.  相似文献   

3.
Abstract: Recent in vivo microdialysis studies have demonstrated the presence of extracellular levels of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] that can be increased in a concentration-dependent manner by muscarinic receptor activation. The aim of the present study was to determine whether extracellular levels of Ins(1,4,5)P3 could be measured in vitro. Despite rapid increases in internal Ins(1,4,5)P3 levels after stimulation with 1 m M carbachol, there was no change in external levels in both rat brain cortical slices and human neuroblastoma SH-SY5Y cells. Suprafusion of myo -[3H]inositol-prelabelled hippocampal slices with 1 m M carbachol caused an increase in 3H-inositol phosphates over basal levels in the perfusate after 10 min, reaching a peak (223 ± 56% of basal) 20 min after suprafusion with carbachol was started. This response to carbachol was potentiated in the presence of 30 m M K+. Analysis of the individual 3H-inositol phosphates in the perfusate revealed that levels of [3H]inositol monophosphate, [3H]inositol bisphosphate, [3H]inositol trisphosphate, and [3H]inositol tetrakisphosphate were all significantly increased. A similar increase in extracellular 3H-inositol phosphates was demonstrated in SH-SY5Y cells incubated with 1 m M carbachol for 30 min. This response was again enhanced by 30 m M K+, although the intracellular response was not potentiated. Possible roles for extracellular inositol phosphates are discussed.  相似文献   

4.
A hypertonic mannitol shock enhanced K+ uptake by Beta vulgaris L. (cv. early flat Egyptian) storage tissue slices and also increased the inositol 1,4,5-trisphosphate [Ins(1,4,5)P3) content of the slices as well as of Sorghum bicolor L. (cv. Hazera) and Vigna radiata L. (cv. unknown) roots. K+ uptake by B. vulgaris slices could be enhanced, in the absence of mannitol, by application of effectors that mimic products of the phosphatidylinositol 4,5-bisphosphate (PIP2) turnover cycle. Maximal Ins (1,4,5)P3 content was found 10 min after hypertonic induction and maximal K+ uptake was obtained 10 min later. The hypertonic mannitol shock, administered to intact B. vulgaris slices, also enhanced the phosphorylation of a 39 kDa protein in the plasmalemma.  相似文献   

5.
Abstract: The ability of lithium to interfere with the metabolism of inositol phosphates in brain may underlie its therapeutic action in manic-depressive illness. In these experiments, lithium, at therapeutic concentrations, enhanced the accumulation of [3H]inpsitol monophosphate but suppressed the accumulation of the putative second messengers [3H]inositol 1,4,5-trisphosphate ([3H]Ins(1,4,5)P3) and f3H]inositol 1,3,4,5-tetrakisphosphate following stimulation of cerebral cortex slices with carbachol. Mass measurements of Ins(1,4,5)P3showed similar inhibitory effects, which could be prevented by preincubation with myo -inositol. These data may reveal the mechanism by which lithium can reduce polyphosphoinositide-midiated neurotransmission in brain.  相似文献   

6.
Abstract: Mild depolarisation (20 m M KCI) synergistically enhances the ability of a muscarinic agonist to activate phosphoinositide turnover and to elevate inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] in cerebellar granule cells in primary culture. The effects of lithium on this intense stimulation of phosphoinositide turnover was studied. Lithium causes depletion of cytoplasmic inositol and phosphoinositides, which results in the inhibition of phosphoinositide turnover within 15 min and the return of Ins(1,4,5)P3 to basal levels at this time. This inhibition could not be reversed by culturing and preincubating cerebellar granule cells in concentrations of inositol similar to those detected in the CSF. Inositol concentrations substantially in excess of those in the CSF not only reversed the effects of lithium on stimulated Ins(1,4,5)P3 levels, but significantly enhanced this level in comparison with stimulation in the absence of lithium. sn -1,2-Diacylglycerol elevation during stimulated phosphoinositide turnover was also disrupted by lithium, but in contrast to Ins(1,4,5)3, the presence of lithium resulted in a transient enhancement of the elevation evoked by carbachol plus mild KCI depolarisation, which was reversed by 500 µ M inositol, but not by 200 µ M inositol. The implications of these phenomena in relation to the mechanism of action of lithium in the treatment of manic depression are discussed.  相似文献   

7.
8.
Infusion of inositol-3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4) from the patch pipette into the cytoplasm, produced a biphasic intracellular free Ca2+ concentration ([Ca2+]i) increase in ras-transformed NIH/3T3 (DT) cells. The Ins(3,4,5,6)P4-induced increase in DT cells depended upon extracellular Ca2+ and was enhanced by membrane hyperpolarization. Identical [Ca2+]i increases were observed with intracellular application of inositol-1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) and inositol-1,3,4,6-tetrakisphosphate but not with inositol-1,2,4,5-tetrakisphosphate, inositol-1,4,5-trisphosphate or inositol-1,3,4,5,6-pentakisphosphate. Stimulation of DT cells with bradykinin increased the levels of Ins(3,4,5,6)P4 and Ins(1,3,4,5)P4. These results suggest that Ins(3,4,5,6)P4 may serve as a second messenger for continuous Ca2+ influx along with other tetrakisphosphates downstream from bradykinin receptors in DT cells.  相似文献   

9.
We evaluated the effect of haloperidol (HP) and its metabolites on [3H](+)-pentazocine binding to σ1 receptors in SH-SY5Y human neuroblastoma cells and guinea pig brain P1, P2 and P3 subcellular fractions. Three days after a single i.p. injection in guinea pigs of HP (but not of other σ1 antagonists or (−)-sulpiride), [3H](+)-pentazocine binding to brain membranes was markedly decreased. Recovery of σ1 receptor density to steady state after HP-induced inactivation required more than 30 days. HP-metabolite II (reduced HP, 4-(4-chlorophenyl)-α-(4-fluorophenyl)-4-hydroxy-1-piperidinebutanol), but not HP-metabolite I (4-(4-chlorophenyl)-4-hydroxypiperidine), irreversibly blocked σ1 receptors in guinea pig brain homogenate and P2 fraction in vitro . We found similar results in SH-SY5Y cells, which suggests that this process may also take place in humans. HP irreversibly inactivated σ1 receptors when it was incubated with brain homogenate and SH-SY5Y cells, but not when incubated with P2 fraction membranes, which suggests that HP is metabolized to inactivate σ1 receptors. Menadione, an inhibitor of the ketone reductase activity that leads to the production of HP-metabolite II, completely prevented HP-induced inactivation of σ1 receptors in brain homogenates. These results suggest that HP may irreversibly inactivate σ1 receptors in guinea pig and human cells, probably after metabolism to reduced HP.  相似文献   

10.
The accumulation of inositol polyphosphates in the cerebellum in response to agonists has not been demonstrated. Guinea pig cerebellar slices prelabeled with [3H]inositol showed the following increases in response to 1 mM serotonin: At 15 s, there was a peak in 3H label in the second messenger inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], decreasing to a lower level in about 1 min. The level of 3H label in the putative second-messenger inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] increased rapidly up to 60 s and increased slowly thereafter. The accumulation of 3H label in various inositol phosphate isomers at 10 min, when steady state was obtained, showed the following increases due to serotonin: inositol 1,3,4-trisphosphate [Ins(1,3,4)P3], eight-fold; Ins(1,3,4,5)P4, 6.4-fold; Ins(1,4,5)P3, 75%; inositol 1,4-bisphosphate [Ins(1,4)P2], 0%; inositol 3,4-bisphosphate, 100%; inositol 1-phosphate/inositol 3-phosphate, 30%; and inositol 4-phosphate, 40%. [3H]Inositol 1,3-bisphosphate was not detected in controls, but it accounted for 7.2% of the total inositol bisphosphates formed in the serotonin-stimulated samples. The fact that serotonin did not increase the formation of Ins(1,4)P2 could be due to the fact that Ins(1,4)P2 is rapidly degraded or that Ins(1,4,5)P3 is metabolized primarily by Ins(1,4,5)P3-3'kinase to form Ins(1,3,4,5)P4. In the presence of pargyline (10 microM), [3H]Ins(1,3,4,5)P4 and [3H]Ins(1,3,4)P3 levels were increased, even at 1 microM serotonin. Ketanserin (7 microM) completely inhibited the serotonin effect, indicating stimulation of serotonin2 receptors. Quisqualic acid (100 microM) also increased the levels of [3H]Ins(1,4,5)P3, [3H]Ins(1,3,4,5)P4, and [3H]Ins(1,3,4)P3, but the profile of these increases was different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Components of the polyphosphoinositide signalling pathway have been identified in stomatal guard cells of Commelina communis L., one of the few plant systems shown unequivocally to be capable of responding to release of inositol 1,4,5-trisphosphate in the cytoplasm by increase in cytoplasmic Ca2+. 'Isolated' epidermal strips of C. communis (in which all cells other than guard cells have been killed by treatment at low pH) were radiolabelled with myo -[2n-3H]inositol or [32P]orthophosphate for 17–18 h. The phosphoinositides and inositol phosphates were extracted. Phosphoinositides were deacylated and the head groups resolved by HPLC. The water-soluble products generated by mild periodate cleavage of HPLC-purified, deacylated lipid fractions were examined. The resulting biochemical analysis led to the identification of: PtdIns, PtdIns3 P , PtdIns4 P , PtdIns(3,4) P 2 and PtdIns(4,5) P 2. Thex inositol phosphates were resolved by HPLC. Preliminary analysis of HPLC-purified putative inositol phosphate fractions resulted in the identification of each inositol phosphate class, that is, Ins P , Ins P 2, Ins P 3, Ins P 4, Ins P 5 and InsP6. Many of these inositol phosphates occurred in different isomeric forms. The presence of 3-phosphorylated phosphoinositides suggests that they may have a role in signalling in stomatal guard cells.  相似文献   

12.
Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,4-bisphosphate [Ins(1,4)P2] phosphatase activities were measured in both 180,000 g (60 min) particulate and supernatant fractions of rat brain homogenates. Although Ins(1,4,5)P3 was mostly hydrolysed by a particulate phosphatase [Erneux, Delvaux, Moreau & Dumont (1986) Biochem. Biophys. Res. Commun. 134, 351-358], Ins(1,4)P2 phosphatase was predominantly soluble. The latter enzyme was Mg2+-dependent and sensitive to thiol-blocking agents (e.g. p-hydroxymercuribenzoate). In contrast with Ins(1,4,5)P3 phosphatase activity measured in the soluble fraction, Ins(1,4)P2 phosphatase was insensitive to 0.001-1 mM-2,3-bisphosphoglycerate. Lithium salts, widely used in psychiatric treatment, inhibited both Ins(1,4)P2 and Ins(1)P1 phosphatase activities of the crude soluble fraction. In particular, 50% inhibition of phosphatase activity, with 2 microM-Ins(1,4)P2 as substrate, was achieved at 3-5 mM-LiCl. At these concentrations, LiCl did not change Ins(1,4,5)P3 phosphatase activity measured in the same fraction with 1-4 microM-Ins(1,4,5)P3 as substrate. Chromatography of the soluble fraction of a rat brain homogenate on DEAE-cellulose resolved three phosphatase activities. These forms, peaks I, II and III, dephosphorylated Ins(1,4,5)P3, Ins(1)P1 and Ins(1,4)P2 respectively. If LiCl (10 mM) was included in the assay mixture, it inhibited both peak-II Ins(1)P1 phosphatase and peak-III Ins(1,4)P2 phosphatase, suggesting the existence of at least two Li+-sensitive phosphatases.  相似文献   

13.
Fibroblast growth factor 2 (FGF-2) is a mitogen that is exported from cells by an endoplasmic reticulum/Golgi-independent secretory pathway. Recent findings have shown that FGF-2 export occurs by direct translocation from the cytoplasm across the plasma membrane into the extracellular space. Here, we report that FGF-2 contains a binding site for phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], the principal phosphoinositide species associated with plasma membranes. Intriguingly, in the context of a lipid bilayer, the interaction between FGF-2 and PI(4,5)P2 is shown to depend on a lipid background that resembles plasma membranes. We show that the interaction with PI(4,5)P2 is critically important for FGF-2 secretion as experimental conditions reducing cellular levels of PI(4,5)P2 resulted in a substantial drop in FGF-2 export efficiency. Likewise, we have identified FGF-2 variant forms deficient for binding to PI(4,5)P2 that were found to be severely impaired with regard to export efficiency. These data show that a transient interaction with PI(4,5)P2 associated with the inner leaflet of plasma membranes represents the initial step of the unconventional secretory pathway of FGF-2.  相似文献   

14.
A very high density of stereospecific binding sites for inositol-(1,4,5)P3 have been identified in rat cerebellar membranes using [3H]inositol-(1,4,5)P3 and a rapid centrifugation step to separate free and bound ligand. Binding was shown to be rapid and reversible and of relatively high affinity (KD 23 nM). Incubations were carried out at 4 degrees and under these conditions HPLC analysis demonstrated that there was no significant metabolism of [3H]-(1,4,5)P3 in the presence or absence of ATP over 15 min. The specificity of the site has been carefully evaluated using both natural and novel synthetic inositol phosphates. The stereospecificity is very marked with the D-, DL- and L-isomers of Ins(1,4,5)P3 showing a 1:4:2000 ratio of affinity for the binding site. D-Ins(2,4,5)P3 was the only other phosphate to show relatively high affinity (KD 1500 nM). HPLC-pure Ins(1,3,4)P3 and Ins(1,3,4,5)P4 were substantially weaker and Ins(1,4)P2, Ins-2-P1, Ins-1-P1, Ins(1,2)-cyclic P1 and inositol were totally inactive at concentrations less than 50 microM. These data are discussed in relation to a putative receptor on the endoplasmic reticulum by which Ins(1,4,5)P3 can initiate the release of bound Ca2+.  相似文献   

15.
The agonist-dependent hydrolysis of inositol phospholipids was investigated by studying the breakdown of prelabelled lipid or by measuring the accumulation of inositol phosphates. Stimulation of insect salivary glands with 5-hydroxytryptamine for 6 min provoked a rapid disappearance of [3H]phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] and [3H]phosphatidylinositol 4-phosphate (PtdIns4P) but had no effect on the level of [3H]phosphatidylinositol (PtdIns). The breakdown of PtdIns(4,5)P2 was associated with a very rapid release of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], which reached a peak 5 1/2 times that of the resting level after 5 s of stimulation. This high level was not maintained but declined to a lower level, perhaps reflecting the disappearance of PtdIns(4,5)P2. 5-Hydroxytryptamine also induced a rapid and massive accumulation of inositol 1,4-bisphosphate [Ins(1,4)P2]. The fact that these increases in Ins(1,4,5)P3 and Ins(1,4)P2 precede in time any increase in the level of inositol 1-phosphate or inositol provides a clear indication that the primary action of 5-hydroxytryptamine is to stimulate the hydrolysis of PtdIns(4,5)P2 to yield diacylglycerol and Ins(1,4,5)P3. The latter is then hydrolysed by a series of phosphomonoesterases to produce Ins(1,4)P2, Ins1P and finally inositol. The very rapid agonist-dependent increases in Ins(1,4,5)P3 and Ins(1,4)P2 suggests that they could function as second messengers, perhaps to control the release of calcium from internal pools. The PtdIns(4,5)P2 that is used by the receptor mechanism represents a small hormone-sensitive pool that must be constantly replenished by phosphorylation of PtdIns. Small changes in the size of this small energy-dependent pool of polyphosphoinositide will alter the effectiveness of the receptor mechanism and could account for phenomena such as desensitization and super-sensitivity.  相似文献   

16.
PROTEIN COMPOSITION OF MYELIN OF THE PERIPHERAL NERVOUS SYSTEM   总被引:33,自引:15,他引:18  
Abstract— Myelin was purified from the peripheral nervous system (PNS) of several species. The protein composition of these preparations was examined by discontinuous polyacrylamide gel electrophoresis in buffers containing sodium lauryl sulphate. Proteins characteristic of all samples include, in order of increasing mobility: a series of high molecular weight proteins, the major peripheral nerve protein (P0), two uncharacterized proteins, and two basic proteins (P1 and P2). Quantitative results, obtained by densitometry of gels stained with Fast Green showed differences in protein distribution, both between species, and from different types of nerves obtained from the same animal. The relative amounts of P1 and P2 proteins were the most variable; e.g. myelin from guinea-pig sciatic nerve had little or no P2 protein, whereas 15 per cent of the myelin protein of beef posterior intradural root was Pz protein. P0, P1 and P2 proteins from rabbit sciatic nerve and P0 and P2 proteins from beef dorsal and ventral intradural roots were purified and their amino acid compositions were determined. Our results indicated that the P1 protein is very similar in size and amino acid composition to the basic protein of central nervous system myelin, whereas the P0 and P2 proteins are unique to the PNS.  相似文献   

17.
Process pasteurization values for reference temperature 70°C (P70) were calculated from the temperature profiles of 250 g luncheon meat chubs cooked under experimental conditions. A simple equation relating Process P70-value and the time and temperature of cooking was derived. With minimal cooking (P70= 40) the surviving microflora (103/g) was dominated by species of Lactobacillus, Brochothrix and Micrococcus. These organisms were destroyed by more intensive cooking (P70= 105), leaving a flora (102/g) composed of Bacillus and Micrococcus species. The spoilage that developed after 14 d storage at 25°C reflected the severity of the heat treatment received by each chub: with P70 between 40 and 90, a Streptococcus spoilage sequence occurred; with P70 between 105 and 120, a Bacillus/Streptococcus spoilage sequence occurred; with P70 of 135 and above, a Bacillus spoilage sequence occurred. Cooking to a P70= 75 was adequate to reduce the surviving microflora to the 102/g level associated with current good manufacturing practice.  相似文献   

18.
Abstract: The regulatory role of A2A adenosine receptors in P2 purinoceptor-mediated calcium signaling was investigated in rat pheochromocytoma (PC12) cells. When PC12 cells were treated with 2- p -(2-carboxyethyl)-phenethylamino-5'- N -ethylcarboxamidoadenosine (CGS-21680), a specific agonist of the A2A adenosine receptor, the extracellular ATP-evoked rise in cytosolic free Ca2+ concentration ([Ca2+]i) was inhibited by 20%. Both intracellular calcium release and inositol 1,4,5-trisphosphate production evoked by ATP were not affected by CGS-21680 treatment. However, ATP-evoked Ca2+ influx was inhibited following CGS-21680 stimulation. The CGS-21680-mediated inhibition occurred independently of nifedipine-induced inhibition of the [Ca2+]i rise. The CGS-21680-induced inhibition was completely blocked by reactive blue 2. The CGS-21680 effect was mimicked by forskolin and dibutyryl-cyclic AMP and blocked by Rp -adenosine 3',5'-cyclic monophosphothioate, a protein kinase A inhibitor, or by staurosporine, a general kinase inhibitor. The data suggest that in PC12 cells activation of A2A adenosine receptors leads to inhibition of P2 purinoceptor-mediated Ca2+ influx through ATP-gated cation channels and involves protein kinase A.  相似文献   

19.
Phosphate addition to P-limited cells of Chlamydomonas reinhardtii resulted in an immediate increase in the rate of respiratory O2 consumption. The respiration rate continued to increase for several minutes after the addition of P1. Similar patterns of P1 stimulation of respiratory O2 consumption were observed in the presence of cyanide (cytochrome oxidase inhibitor) and propyl gallate (alternative oxidase inhibitor). Stimulation of O2 consumption was accompanied by rapid changes in levels of glycolytic intermediates. These changes were consistent with activation of ATP-dependent phosphofructokinase and pyruvate kinase. The adenylate pool exhibited only minor perturbations, P1, uptake resulted in extracellular acidification, which continued for several minutes after the exhaustion of added P1, whereas exhaustion of extracellular P1 resulted in a rapid decline in the O2 consumption rate. These results are consistent with control of respiration in P-limited cells occurring largely at the level of glycolysis.  相似文献   

20.
Abstract: P0 glycoprotein, the major protein of PNS myelin, contains approximately 1 mol of covalently bound long-chain fatty acids. To determine the chemical nature of the fatty acid-protein linkage, P0 was labeled in rat sciatic nerve slices with [3H]palmitic acid and subsequently treated with various reagents. The protein-bound palmi-tate was released by incubation with the reducing agents dithiothreitol and 2-mercaptoethanol, and with 1 M hydrox-ylamine at pH 7.5. In addition, P0 was deacylated by treatment with 10 m M NaBH4 with the concomitant production of [3H]hexadecanol, indicating that the fatty acid is bound in a thioester linkage. This conclusion was supported further by the fact that deacylation with hydroxylamine generated free thiol groups, which were titrated with [14C]-iodoacetamide. To identify the cysteine residue involved in the thioester linkage, [14C]carboxyamidomethylated P0was digested with trypsin and the resulting peptides analyzed by reversed-phase HPLC. Identification of the radioactive protein fragments by amino acid analysis and amino-terminal peptide sequencing revealed that Cys153 in rat P0 glycoprotein is the acylation site. The acylated cysteine is located at the junction of the putative transmem-brane and cytoplasmic domains. This residue is also present in the P0 glycoprotein of other species, including human, bovine, mice, and chicken.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号