首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluoroscopic analysis is an important tool for assessing in vivo kinematics of knee prostheses. Most commonly, a single-plane fluoroscopic setup is used to capture the motion of prostheses during a particular task. Unfortunately, single-plane fluoroscopic analysis is imprecise in the out-of-plane direction. This can result in reconstructing physically impossible poses, in which—for example—the femoral component intersects with the insert, as the normal pose estimation process does not take into account the relation between the components. In the proposed method, the poses of both components are estimated simultaneously, while preventing femur–insert collisions. In a phantom study, the accuracy and precision of the new method in estimating the relative pose of the femoral component were compared to those of the original method. With reverse engineered models, the errors in estimating the out-of-plane position decreased from 2.0±0.7 to 0.1±0.1 mm, without effects on the errors in rotations and the in-plane positions. With CAD models, the errors in estimating the out-of-plane position decreased from 5.3±0.7 mm (mean±SD) to 0.0±0.4 mm, at the expense of a decreased precision for the other position or orientation parameters. In conclusion, collision detection can prevent reconstructing impossible poses and it improves the position and motion estimation in the out-of-plane direction.  相似文献   

2.
The measurement of relative motion between two moving bones is commonly accomplished for in vitro studies by attaching to each bone a series of either passive or active markers in a fixed orientation to create a rigid body (RB). This work determined the accuracy of motion between two RBs using an Optotrak optical motion capture system with active infrared LEDs. The stationary noise in the system was quantified by recording the apparent change in position with the RBs stationary and found to be 0.04 degrees and 0.03 mm. Incremental 10 degrees rotations and 10-mm translations were made using a more precise tool than the Optotrak. Increasing camera distance decreased the precision or increased the range of values observed for a set motion and increased the error in rotation or bias between the measured and actual rotation. The relative positions of the RBs with respect to the camera-viewing plane had a minimal effect on the kinematics and, therefore, for a given distance in the volume less than or close to the precalibrated camera distance, any motion was similarly reliable. For a typical operating set-up, a 10 degrees rotation showed a bias of 0.05 degrees and a 95% repeatability limit of 0.67 degrees. A 10-mm translation showed a bias of 0.03 mm and a 95% repeatability limit of 0.29 mm. To achieve a high level of accuracy it is important to keep the distance between the cameras and the markers near the distance the cameras are focused to during calibration.  相似文献   

3.
Quantification of knee motion under dynamic, in vivo loaded conditions is necessary to understand how knee kinematics influence joint injury, disease, and rehabilitation. Though recent studies have measured three-dimensional knee kinematics by matching geometric bone models to single-plane fluoroscopic images, factors limiting the accuracy of this approach have not been thoroughly investigated. This study used a three-step computational approach to evaluate theoretical accuracy limitations due to the shape matching process alone. First, cortical bone models of the femur tibia/fibula, and patella were created from CT data. Next, synthetic (i.e., computer generated) fluoroscopic images were created by ray tracing the bone models in known poses. Finally, an automated matching algorithm utilizing edge detection methods was developed to align flat-shaded bone models to the synthetic images. Accuracy of the recovered pose parameters was assessed in terms of measurement bias and precision. Under these ideal conditions where other sources of error were eliminated, tibiofemoral poses were within 2 mm for sagittal plane translations and 1.5 deg for all rotations while patellofemoral poses were within 2 mm and 3 deg. However, statistically significant bias was found in most relative pose parameters. Bias disappeared and precision improved by a factor of two when the synthetic images were regenerated using flat shading (i.e., sharp bone edges) instead of ray tracing (i.e., attenuated bone edges). Analysis of absolute pose parameter errors revealed that the automated matching algorithm systematically pushed the flat-shaded bone models too far into the image plane to match the attenuated edges of the synthetic ray-traced images. These results suggest that biased edge detection is the primary factor limiting the theoretical accuracy of this single-plane shape matching procedure.  相似文献   

4.
Fluoroscopic imaging is commonly used for assessing relative motions of orthopaedic implants. One limiting factor to in vivo model-based roentgen stereophotogrammetric analysis of total knee arthroplasty is the need for 3D models of the implants.The 3D models of the implant components must be reverse-engineered, if not provided by the company, which makes this method impractical for a clinical study involving many types or sizes of implants. This study introduces a novel feature-based methodology that registers the features at the implant-bone or implant-cement interface of the components that have elementary shapes. These features include pegs with hemispherical heads, and straight, circular or curved edges located on flat faces of the box of the femoral component or the stem geometry of the tibial component. Software was developed to allow easy registration of these features through a graphical user interface. The accuracy and precision of registration for multiple flexion angles from 0 to 120 deg was determined with reference to registered poses of the implants through experiments on bone replica models and also on a cadaver specimen implanted with total knee prostheses. When compared to an equivalent bi-planar model-based registration, the results were comparable: The mean accuracy of this feature-based method was 1.45 deg and 1.03 mm (in comparison to 0.95 deg and 1.32 mm for the model-based approach), and the mean precision was 0.57 deg and 0.26 mm (in comparison to 0.42 deg and 0.44 mm for the model-based approach).The methodology and the developed software can easily accommodate different design of implants with various fixation features. This method can facilitate in vivo kinematic analysis of total knee arthroplasty by eliminating the need for 3D models of the implant components.  相似文献   

5.
The accuracy of digital Roentgen stereophotogrammetric analysis (RSA) was compared to the accuracy of a manually operated RSA system. For this purpose, we used radiographs of a phantom and radiographs of patients. The radiographs of the patients consisted of double examinations of 12 patients that had a tibial osteotomy and of double examinations of 12 patients that received a total hip prosthesis. First, the radiographs were measured manually with an accurate measurement table. Subsequently, the images were digitized by a film scanner at 150 DPI and 300 DPI resolutions and analyzed with the RSA-CMS software. In the phantom experiment, the manually operated system produced significantly better results than the digital system, although the maximum difference between the median values of the manually operated system and the digital system was as low as 0.013 mm for translations and 0.033° for rotations. In the radiographs of the patients, the manually operated system and the digital system produced equally accurate results: no significant differences in translations and rotations were found. We conclude that digital RSA is an accurate, fast, and user friendly alternative for manually operated RSA. Currently, digital RSA systems are being used in a growing number of clinical RSA-studies.  相似文献   

6.
Zhao K  Yang C  Zhao C  An KN 《Journal of biomechanics》2005,38(9):1943-1946
This study compared the accuracy of new, FDA-approved, image-analysis software to conventional radiographic assessment techniques for the measurement of intervertebral motion. Six adult human cadaveric lumbar spines (L1-S1) were individually mounted in a custom Plexiglas device and electromagnetic sensors were rigidly mounted to the spinous processes of L3, L4, and L5. Lateral radiographs of the spines in neutral, full flexion, and full extension were digitized and analyzed both using the software and manually by three orthopedic surgeons. Compared to intervertebral rotations determined from the electromagnetic device, the errors in rotations reported by the software and surgeons were 0.47+/-0.24 degrees and 2.16+/-0.78 degrees , respectively. Rotations measured by the surgeons were significantly less accurate and more variable than that of the software (p<0.05).  相似文献   

7.
It remains unknown if and how the polyethylene bearing in mobile bearing knees moves during dynamic activities with respect to the tibial base plate. Marker Configuration Model-Based Roentgen Fluoroscopic Analysis (MCM-based RFA) uses a marker configuration model of inserted tantalum markers in order to accurately estimate the pose of an implant or bone using single plane Roentgen images or fluoroscopic images. The goal of this study is to assess the accuracy of (MCM-Based RFA) in a standard fluoroscopic set-up using phantom experiments and to determine the error propagation with computer simulations. The experimental set-up of the phantom study was calibrated using a calibration box equipped with 600 tantalum markers, which corrected for image distortion and determined the focus position. In the computer simulation study the influence of image distortion, MC-model accuracy, focus position, the relative distance between MC-models and MC-model configuration on the accuracy of MCM-Based RFA were assessed. The phantom study established that the in-plane accuracy of MCM-Based RFA is 0.1 mm and the out-of-plane accuracy is 0.9 mm. The rotational accuracy is 0.1 degrees. A ninth-order polynomial model was used to correct for image distortion. Marker-Based RFA was estimated to have, in a worst case scenario, an in vivo translational accuracy of 0.14 mm (x-axis), 0.17 mm (y-axis), 1.9 mm (z-axis), respectively, and a rotational accuracy of 0.3 degrees. When using fluoroscopy to study kinematics, image distortion and the accuracy of models are important factors, which influence the accuracy of the measurements. MCM-Based RFA has the potential to be an accurate, clinically useful tool for studying kinematics after total joint replacement using standard equipment.  相似文献   

8.
This paper reports the changes in spinal shape resulting from scoliotic spine surgical instrumentation expressed as intervertebral rotations and centers of rotation. The objective is to test the hypothesis that the type of spinal instrumentation system (Cotrel-Dubousset versus Colorado) does not influence these motion parameters. Intervertebral rotations and centers of rotation of the scoliotic spines were computed from the pre- and post-operative radiographs of 82 patients undergoing spinal correction. The three-dimensional (3D) reconstruction of six anatomical landmarks was achieved for each of the thoracic and lumbar vertebrae. A least-squares approach based on singular value decomposition was used to calculate the rigid body transformation parameters. Average centers of rotation for all intervertebral levels are located in the neural canal at the mid-sagittal plane and approximately at the superior endplate level of the inferior vertebra. Intervertebral rotations have components in all planes: 6.7 degrees (frontal), 5.5 degrees (sagittal) and 4.5 degrees (transverse) RMS for all intervertebral levels. Nearly all intervertebral rotations and centers of rotation are not significantly different for the two instrumentation systems. Various intervertebral rotations and 3D reconstruction errors were simulated on a theoretical model of a lumbar functional unit to assess the proposed method. Intervertebral rotation errors were 1.7 degrees when simulating 3D errors of 3mm on the position of the landmarks. Maximum errors for the position of centers of rotation were below 1cm in the case of intervertebral rotations larger than 2.5 degrees (most cases), but were larger (38 mm) for small intervertebral rotations (<1 degrees ). The type of instrumentation system did not influence intervertebral rotations and centers of rotation. These results provide valuable data for the development and validation of simulation models for surgical instrumentation of idiopathic scoliosis.  相似文献   

9.
Rationale and Objectives. To reduce tibio-femoral misalignment, the polyethylene bearing-component of a new knee prosthesis was allowed limited motion on the underlying metallic component. The object of the work presented here was to develop a suitable radiographic technique for quantifying the in-vivo position of the bearing. By collecting these data at discrete flexion angles, the functional operation of the prosthesis could be determined. Methods. The known geometries between landmarks on the two components were used to produce algorithms for reconstructing their spatial positions from a single radiograph. A custom-designed computer program utilized these algorithms to determine the relative translation and rotation of the polyethylene component. Results. This technique produced typical errors of 0.54 mm translation and 0.56 degrees rotation between the polyethylene component and the underlying metallic component. Conclusions. A practical method has been developed for assessing mobile-bearing motion, in vivo. This method can be applied to other prosthetic devices, or combinations of components, once the requirement for identifiable landmarks has been addressed. Clinical Relevance. Skeletal and soft-tissue changes in the pathological knee may produce abnormal rotations and translations in the transverse tibial plane. This technique is intended both to validate the design philosophy of a mobile-bearing prosthesis and to provide additional data on any pathological motions, which will have implications for future prosthetic designs.  相似文献   

10.
Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.  相似文献   

11.
Dynamic assessment of three-dimensional (3D) skeletal kinematics is essential for understanding normal joint function as well as the effects of injury or disease. This paper presents a novel technique for measuring in-vivo skeletal kinematics that combines data collected from high-speed biplane radiography and static computed tomography (CT). The goals of the present study were to demonstrate that highly precise measurements can be obtained during dynamic movement studies employing high frame-rate biplane video-radiography, to develop a method for expressing joint kinematics in an anatomically relevant coordinate system and to demonstrate the application of this technique by calculating canine tibio-femoral kinematics during dynamic motion. The method consists of four components: the generation and acquisition of high frame rate biplane radiographs, identification and 3D tracking of implanted bone markers, CT-based coordinate system determination, and kinematic analysis routines for determining joint motion in anatomically based coordinates. Results from dynamic tracking of markers inserted in a phantom object showed the system bias was insignificant (-0.02 mm). The average precision in tracking implanted markers in-vivo was 0.064 mm for the distance between markers and 0.31 degree for the angles between markers. Across-trial standard deviations for tibio-femoral translations were similar for all three motion directions, averaging 0.14 mm (range 0.08 to 0.20 mm). Variability in tibio-femoral rotations was more dependent on rotation axis, with across-trial standard deviations averaging 1.71 degrees for flexion/extension, 0.90 degree for internal/external rotation, and 0.40 degree for varus/valgus rotation. Advantages of this technique over traditional motion analysis methods include the elimination of skin motion artifacts, improved tracking precision and the ability to present results in a consistent anatomical reference frame.  相似文献   

12.
The accuracy of estimating the relative pose between knee replacement components, in terms of clinical motion, is important in the study of knee joint kinematics. The objective of this study was to determine the accuracy of the single-plane fluoroscopy method in calculating the relative pose between the femoral component and the tibial component, along knee motion axes, while the components were in motion relative to one another. The kinematics of total knee replacement components were determined in vitro using two simultaneous methods: single-plane fluoroscopic shape matching and an optoelectronic motion tracking system. The largest mean differences in relative pose between the two methods for any testing condition were 2.1°, 0.3°, and 1.1° in extension, abduction, and internal rotation respectively, and 1.3, 0.9, and 1.9 mm in anterior, distal, and lateral translations, respectively. For the optimized position of the components during dynamic trials, the limits of agreement, between which 95% of differences can be expected to fall, were -2.9 to 4.5° in flexion, -0.9 to 1.5° in abduction, -2.4 to 2.1° in external rotation, -2.0 to 3.9 mm in anterior-posterior translation, -2.2 to 0.4mm in distal-proximal translation and -7.2 to 8.6mm in medial-lateral translation. These mean accuracy values and limits of agreement can be used to determine whether the shape-matching approach using single-plane fluoroscopic images is sufficiently accurate for an intended motion tracking application.  相似文献   

13.
Rationale and Objectives. To reduce tibio-femoral misalignment, the polyethylene bearing-component of a new knee prosthesis was allowed limited motion on the underlying metallic component. The object of the work presented here was to develop a suitable radiographic technique for quantifying the in-vivo position of the bearing. By collecting these data at discrete flexion angles, the functional operation of the prosthesis could be determined

Methods. The known geometries between landmarks on the two components were used to produce algorithms for reconstructing their spatial positions from a single radiograph. A custom-designed computer program utilized these algorithms to determine the relative translation and rotation of the polyethylene component

Results. This technique produced typical errors of 0.54 mm translation and 0.56° rotation between the polyethylene component and the underlying metallic component

Conclusions. A practical method has been developed for assessing mobile-bearing motion, in vivo. This method can be applied to other prosthetic devices, or combinations of components, once the requirement for identifiable landmarks has been addressedClinical Relevance. Skeletal and soft-tissue changes in the pathological knee may produce abnormal rotations and translations in the transverse tibial plane. This technique is intended both to validate the design philosophy of a mobile-bearing prosthesis and to provide additional data on any pathological motions, which will have implications for future prosthetic designs.  相似文献   

14.
An analysis of plain radiographs, digital subtraction arthrography, and radionuclide arthrography was performed in 25 revision hip arthroplasties to evaluate the efficacy and usefulness of these methods in the diagnosis of loosening. The findings by each method were compared with intraoperative assessment of the status of components and expressed in terms of sensitivity, specificity, and predictive accuracy. Overall accuracy for the acetabular component by plain radiographs was 80%; by digital subtraction arthrography, 88%; by radionuclide arthrography, 68%. Overall accuracy for the femoral component by plain radiographs was 92%; by digital subtraction arthrography, 84%; radionuclide arthrography, 76%. We consider subtraction arthrography and radionuclide arthrography to be adjuvant diagnostic tools which may be indicated in individual cases of suspected implant loosening of total hip arthroplasty. The routine use of these two methods is not warranted when compared to plain radiographs.  相似文献   

15.
To reduce the amount of radiographs needed for patients with a scoliosis, a radiation-free method based on topographic images of the back was developed. An active contour model simulating spinal stiffness has been applied to video rasterstereographic (VRS) data. The aim of the present study is (a) to evaluate the applicability of active contours to improve the accuracy and the reliability of the three-dimensional (3D) spinal midline reconstruction from back surface data and (b) to design a more robust method to detect the spinal midline. To evaluate the reliability and accuracy, the active contour-based method is compared to a conventional procedure, which has been specifically developed for scoliosis; both methods produce a 3D curve of the spinal midline. The frontal projections and surface rotations of these spinal midlines are compared; r.m.s. deviations of 0.9 mm between the frontal curves and 0.4 degrees between the surface rotations were obtained. Applying the active contour-based method does therefore not result in a substantial difference in accuracy to the conventional procedure. As a conclusion the active contour method is a valuable mathematical method that can accurately reconstruct the spinal midline based on back surface data. In addition, the method can be applied to various postures.  相似文献   

16.
We have developed a non-invasive measurement technique which can ultimately be used to quantify three-dimensional patellar kinematics of human subjects for a range of static positions of loaded flexion and assessed its accuracy. Knee models obtained by segmenting and reconstructing one high-resolution scan of the knee were registered to bone outlines obtained by segmenting fast, low-resolution scans of the knee in static loaded flexion. We compared patellar tracking measurements made using the new method to measurements made using Roentgen stereophotogrammetric analysis in three cadaver knee specimens loaded through a range of flexion in a test rig. The error in patellar spin and tilt measurements was less than 1.02 degrees and the error in lateral patellar shift was 0.88 mm. Sagittal plane scans provided more accurate final measurements of patellar spin and tilt, whereas axial plane scans provided more accurate measurements of lateral translation and patellar flexion. Halving the number of slices did not increase measurement error significantly, which suggests that scan times can be reduced without reducing accuracy significantly. The method is particularly useful for multiple measurements on the same subject because the high-resolution bone-models need only be created once; thus, the potential variability in coordinate axes assignment and model segmentation during subsequent measurements is removed.  相似文献   

17.
Numerous techniques have been employed to monitor humeral head translation due to its involvement with several shoulder pathologies. However, most of the techniques were not validated. The objective of this study is to compare the accuracy of manual digitization and contour registration in measuring superior translation of the humeral head. Eight pairs of cadaver scapulae and humerii bones were harvested for this study. Each scapula and humerus was secured in a customized jig that allowed for control of humeral head translations and a vise that permitted rotations of the scapula about three axes. Fluoroscopy was used to take images of the shoulder bones. Scapular orientation was manipulated in different positions while the humerus was at 90° of humeral elevation in the scapular plane. Humeral head translation was measured using the two methods and was compared to the known translation. Additionally, accuracy of the contour registration method to measure 2-D scapular rotations was assessed. The range for the root mean square (RMS) error for manual digitization method was 0.27 mm - 0.43 mm and the contour registration method had a RMS error ranging from 0.18 mm - 0.40 mm. In addition, the RMS error for the scapular angle rotation using the contour registration method was 2.4°. Both methods showed acceptable errors. However, on average, the contour registration method showed lesser measurement error compared to the manual digitization method. In addition, the contour registration method was able to show good accuracy in measuring rotation that is useful in 2-D image analysis.  相似文献   

18.
Motion of the wrist bones is complicated and difficult to measure. Noninvasive measurement of carpal kinematics using medical images has become popular This technique is difficult and most investigators employ custom software. The objective of this paper is to describe a validated methodology for measuring carpal kinematics from computed tomography (CT) scans using commercial software. Four cadaveric wrists were CT imaged in neutral, full flexion, and full extension. A registration block was attached to the distal radius and used to align the data sets from each position. From the CT data, triangulated surface models of the radius, lunate, and capitate bones were generated using commercial software. The surface models from each wrist position were read into engineering design software that was used to calculate the centroid (position) and principal mass moments of inertia (orientation) of (1) the capitate and lunate relative to the fixed radius and (2) the capitate relative to the lunate. These data were used to calculate the helical axis kinematics for the motions from neutral to extension and neutral to flexion. The kinematics were plotted in three dimensions using a data visualization software package. The accuracy of the method was quantified in a separate set of experiments in which an isolated capitate bone was subjected to two different known rotation/translation motions for ten trials each. For comparison to in vivo techniques, the error in distal radius surface matching was determined using the block technique as a gold standard. The motion that the lunate and capitate underwent was half that of the overall wrist flexion-extension range of motion. Individually, the capitate relative to the lunate and the lunate relative to the radius generally flexed or extended about 30 deg, while the entire wrist (capitate relative to radius) typically flexed or extended about 60 deg. Helical axis translations were small, ranging from 0.6 mm to 1.8 mm across all motions. The accuracy of the method was found to be within 1.4 mm and 0.5 deg (95% confidence intervals). The mean error in distal radius surface matching was 2.4 mm and 1.2 deg compared to the use of a registration block. Carpal kinematics measured using the described methodology were accurate, reproducible, and similar to findings of previous investigators. The use of commercially available software should broaden the access of researchers interested in measuring carpal kinematics using medical imaging.  相似文献   

19.
Two-dimensional imaging with a single camera assumes that the motion occurs in a calibrated plane perpendicular to the camera axis. It is well known that kinematic errors result if the object fails to remain in this plane and that if both the distance to the calibration plane from the camera and the distance out-of-plane are known, an analytical correction for the out-of-plane error can be made. Less well appreciated is that out-of-plane distance can frequently be acquired from other, nonimage-related information. In the two examples given, the mediolateral center of pressure coordinate of the foot measured from a force plate and the measured landing point of a shot put throw were used. In both cases, the resulting out-of-plane correction improved the accuracy of the 2-D kinematic data dramatically. These examples also demonstrate that the use of nonimage-related data can increase the accuracy of kinematic data without an increase in the complexity of the experiment.  相似文献   

20.
The use of registration techniques to determine motion transformations noninvasively has become more widespread with the increased availability of the necessary software. In this study, three surface registration techniques were used to generate carpal bone kinematic results from a single cadaveric wrist specimen. Surface contours were extracted from specimen computed tomography volume images of the forearm, carpal, and metacarpal bones in four arbitrary positions. Kinematic results from each of three registration techniques were compared with results derived from multiple spherical markers fixed to the specimen. Kinematic accuracy was found to depend on the registration method and bone size and shape. In general, rotation errors of the capitate and scaphoid were less than 0.5 deg for all three techniques. Rotation errors for the other bones were generally less than 2 deg, although error for the trapezoid was greater than 2 deg in one technique. Translation errors of the bones were generally less than 1 mm, although errors of the trapezoid and trapezium were greater than 1 mm for two techniques. Tradeoffs existed in each registration method between image processing time and overall kinematic accuracy. Markerless bone registration (MBR) can provide accurate measurements of carpal kinematics and can be used to study the noninvasive, three-dimensional in vivo kinematics of the wrist and other skeletal joints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号