首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 138 毫秒
1.
Davet, Julien, Benoit Clavel, Lucien Datas, LaurenceMani-Ponset, Daniel Maurel, Serge Herbuté, Michel Viso, WilliamHinds, Joellen Jarvi, and Jacqueline Gabrion.Choroidal readaptation to gravity in rats after spaceflight andhead-down tilt. J. Appl. Physiol.84(1): 19-29, 1998.To determine when choroidal structures wererestored after readaptation to Earth gravity or orthostatic position,fine structure and protein distribution were studied in rat choroidplexus dissected either 6 h [Space Life Sciences-2 (SLS-2)experiments] or 2 days [National Institutes ofHealth-Rodent 1 (NIH-R1) experiments] after a spaceflight, or 6 hafter head-down tilt (HDT) experiments. Apical alterations were notedin choroidal cells from SLS-2 and HDT animals, confirming thatweightlessness impaired choroidal structures and functions. However,the presence of small apical microvilli and kinocilia and the absenceof vesicle accumulations showed that the apical organization began tobe restored rapidly after landing. Very enlarged apical microvilli appeared after 2 days on Earth, suggesting increased choroidal activity. However, as distributions of ezrin and carbonic anhydrase IIremained altered in both flight and suspended animals after readaptation to Earth gravity, it was concluded that choroidal structures and functions were not completely restored, even after 2 days in Earth's gravity.

  相似文献   

2.
Major alterations of choroidal cell polarity and protein expression were previously shown to be induced in rats by long-term adaptation to space flight (14 days aboard a space shuttle) or anti-orthostatic suspension (14 and 28 days) performed by tilting rats head-down (i.e. using a ground-based model known to simulate several effects of weightlessness). In rabbits, it was hypothesized that the blood-CSF barrier was opened in choroid plexus, after a short head-down suspension. To understand the early responses to fluid shifts induced by head-down tilts and evaluate the tightness of the choroidal junctions, we have investigated the effects of acute adaptations to anti-orthostatic restraints, using hindlimb-suspended Sprague-Dawley and Wistar rats. Ultrastructural and immunocytochemical studies were performed on choroid plexuses from lateral, third and fourth ventricles, after 30, 90 and 180 minutes of head-down tilt. Alterations were not perceptible at the level of choroidal tight junctions, as shown by freeze-fracture, claudin-1 and ZO-1 immunolocalizations and conventional electron microscopy, after intravenous injection of cytochrome C. The apical surface of choroidal cells was clearly more affected. Microvilli were longer and thinner and ezrin was over-expressed during all the periods of time considered, showing an early cytoskeletal response. Several proteins involved in the choroidal production of cerebrospinal fluid (sodium-potassium ATPase, carbonic anhydrase II, aquaporin 1) appeared first increased (30 minutes after the tilt), and then, returned to the control level or were lowered (after a 3-hour head-down suspension). Although head-down tilts do not seem to damage the blood-cerebrospinal fluid barrier in choroid plexus, it seemed that the expression of several apical proteins is affected very early.  相似文献   

3.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na(+)/K(+)-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

4.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na+/K+-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

5.
6.
Formation of amyloid plaques is the hallmark of Alzheimer’s disease. Our early studies show that lead (Pb) exposure in PDAPP transgenic mice increases β-amyloid (Aβ) levels in the cerebrospinal fluid (CSF) and hippocampus, leading to the formation of amyloid plaques in mouse brain. Aβ in the CSF is regulated by the blood-CSF barrier (BCB) in the choroid plexus. However, the questions as to whether and how Pb exposure affected the influx and efflux of Aβ in BCB remained unknown. This study was conducted to investigate whether Pb exposure altered the Aβ efflux in the choroid plexus from the CSF to blood, and how Pb may affect the expression and subcellular translocation of two major Aβ transporters, i.e., the receptor for advanced glycation end-products (RAGE) and the low density lipoprotein receptor protein-1 (LRP1) in the choroid plexus. Sprague-Dawley rats received daily oral gavage at doses of 0, 14 (low-dose), and 27 (high-dose) mg Pb/kg as Pb acetate, 5 d/wk, for 4 or 8 wks. At the end of Pb exposure, a solution containing Aβ40 (2.5 μg/mL) was infused to rat brain via a cannulated internal carotid artery. Subchronic Pb exposure at both dose levels significantly increased Aβ levels in the CSF and choroid plexus (p < 0.05) by ELISA. Confocal data showed that 4-wk Pb exposures prompted subcellular translocation of RAGE from the choroidal cytoplasm toward apical microvilli. Furthermore, it increased the RAGE expression in the choroid plexus by 34.1 % and 25.1 % over the controls (p < 0.05) in the low- and high- dose groups, respectfully. Subchronic Pb exposure did not significantly affect the expression of LRP1; yet the high-dose group showed LRP1 concentrated along the basal lamina. The data from the ventriculo-cisternal perfusion revealed a significantly decreased efflux of Aβ40 from the CSF to blood via the blood-CSF barrier. Incubation of freshly dissected plexus tissues with Pb in artificial CSF supported a Pb effect on increased RAGE expression. Taken together, these data suggest that Pb accumulation in the choroid plexus after subchronic exposure reduces the clearance of Aβ from the CSF to blood by the choroid plexus, which, in turn, leads to an increase of Aβ in the CSF. Interaction of Pb with RAGE and LRP1 in choroidal epithelial cells may contribute to the altered Aβ transport by the blood-CSF barrier in brain ventricles.  相似文献   

7.
To assess the effect of gravity on growth, immature rats (130-200 g) were studied during chronic altered gravity exposure and while transitioning between gravity fields. Body mass gain of rats (n = 12) exposed to 14 days of microgravity (spaceflight) was evaluated and compared to mass gain of 1 G controls. Spaceflight did not affect mass gain. Six rats exposed to 1 G following spaceflight, when compared to controls, experienced a significant (0 < 0.05) post-flight mass loss over 48 h of 13 g. Over subsequent days, however, this loss was compensated for, and no difference from 1 G controls was noted after 5 days. Exposure to hypergravity (2 G) for 16 days was evaluated [(n = 6/group): Centrifuge (C); On Center Control (OCC); Centrifuge Control (CC)]. Body mass of centrifuged and OCC rats was reduced within 24 h, with OCCs regaining control mass within 13 days. The mass difference (44 g) in centrifuged animals persisted, however, with no subsequent difference in rate of mass gain between centrifuged animals and controls over Days 3-16 (3.7 +/- 0.1 vs. 3.9 +/- 0.1 g/day, respectively). Transitioning from 2 G to 1 G resulted in a mass increase within 48 hours for centrifuged animals. Over Days 3-16 at 1 G, the rate of gain for centrifuged animals continued to increase (3.1 +/- 0.1 g/day compared to 2.1 +/- 0.1 g/day for controls); differences from control, however, were still noted on Day 16. Transitioning to an increase in a gravity field causes acute losses in body mass. In hypergravity, the acute reduction in body mass persists but the rate of mass gain is normal. Animals returning to 1 G, after acute changes, adjust to attain control mass.  相似文献   

8.
9.
Possible changes in the epithelial cells of the pigeon choroid plexus induced by administration of thyroid powder (Thyradin), 2,4-dinitrophenol, and cycloheximide were studied by scanning and transmission electron microscopy. A marked increase in the number of large bulbous and bleblike protrusions on the apical end of the epithelial cells was observed after oral administration of Thyradin for a month. The endoplasmic content of the protrusions consisted mainly of electron-lucent material. These results provide morphological evidence for the stimulatory effect of Thyradin. Intramuscular injections of 2,4-dinitrophenol for 15 days caused the collapse or deformation of the mitochondria and bleblike or bulbous protrusions. This indicates that changes in the surface configuration of the choroid plexus are controlled by an energy-dependent mechanism. The decrease of protrusions and polyribosomes and increase of the tubular saccules of varying electron density, size, and shape were noted in cells after 15 days of intramuscular cycloheximide injection. The electron density of the protrusions is lower than that of the control pigeons. The results of this study suggest that a curious pleomorphic structure on the apical surface of the choroid epithelial cell of pigeon is closely related to the functional state of choroidal cells. The study also demonstrates that a secondary ultrastructural response due to diverse physiologic effects is reflected in the architecture of the choroid plexus cells.  相似文献   

10.
Gravity change affects many immunological systems. We investigated the effects of hypergravity (2G) on murine thymic cells. Exposure of mice to 2G for three days reduced the frequency of CD4+CD8+ thymocytes (DP) and mature medullary thymic epithelial cells (mTECs), accompanied by an increment of keratin-5 and keratin-8 double-positive (K5+K8+) TECs that reportedly contain TEC progenitors. Whereas the reduction of DP was recovered by a 14-day exposure to 2G, the reduction of mature mTECs and the increment of K5+K8+ TEC persisted. Interestingly, a surgical lesion of the inner ear’s vestibular apparatus inhibited these hypergravity effects. Quantitative PCR analysis revealed that the gene expression of Aire and RANK that are critical for mTEC function and development were up-regulated by the 3-day exposure and subsequently down-regulated by the 14-day exposure to 2G. Unexpectedly, this dynamic change in mTEC gene expression was independent of the vestibular apparatus. Overall, data suggest that 2G causes a temporary reduction of DP and a persistent reduction of mature mTECs in a vestibular system-dependent manner, and also dysregulates mTEC gene expression without involving the vestibular system. These data might provide insight on the impact of gravity change on thymic functions during spaceflight and living.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号